

Assessing LV and RV Function

Dipan J. Shah, MD, FACC
Professor of Medicine, Weill Cornell Medical College
Director, Cardiovascular MRI Laboratory
Chief, Division of Cardiovascular Imaging
Houston Methodist DeBakey Heart & Vascular Center

HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

Chamber Size and Function

HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER


• Accurate assessment of chamber size and function is clinically important in many types of heart disease.

• Echo most widely used modality

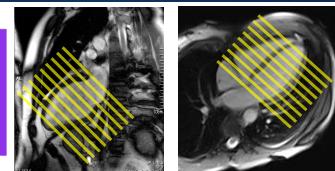
- low cost
- portability
- widespread availability

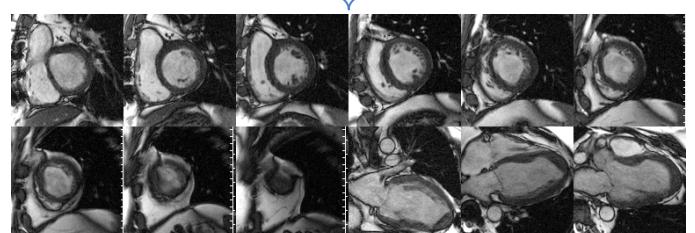
• Echo limitations:

- suboptimal acoustic windows
- operator dependence
- use of geometric assumptions

OUTLINE:

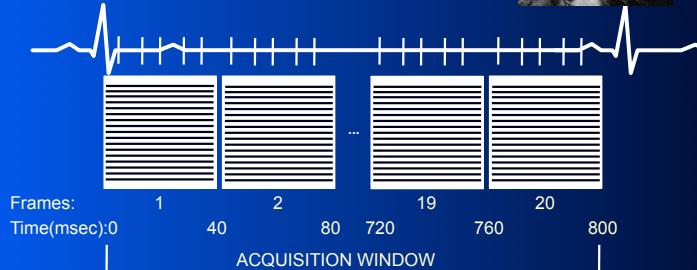
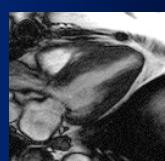
HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER


- CINE CMR IMAGING
 - How Its Performed
 - Limitations
 - Strategies To Overcome Limitations
- CMR DERIVATION OF VOLUMES AND EF
- EFFECT OF AGE AND GENDER ON VOLUMES
- VOLUMES BY CMR VS. ECHO
- HEMODYNAMICS BY CMR


LV Function Study by CMR

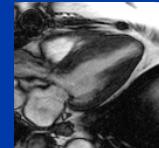
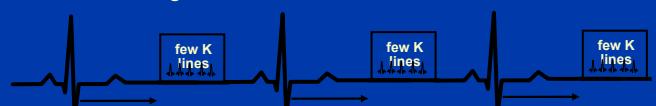
HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

- No need for IV, or contrast agent
- Can typically be acquired in 10-15 minutes



1. Localization: Perpendicular to long axis on 2 & 4 chamber views
2. Slice obtained every 10 mm
3. Use large FOV to avoid phase wrap

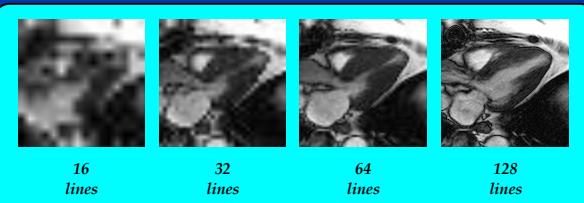
ECG GATING with segmentation

Methodist
DeBakey Heart
& Vascular Center



■ Cine image is a series of 20-25 image frames at different points in the cardiac cycle that are played one after another to create a "movie"

ECG GATING with segmentation

Methodist
DeBakey Heart
& Vascular Center


How does segmentation work?

■ Entire image is completed after 4 heart beats

Image Reconstruction

Methodist
DeBakey Heart
& Vascular Center

16
lines

32
lines

64
lines

128
lines

ECG GATING with segmentation

Methodist
DeBakey Heart
& Vascular Center

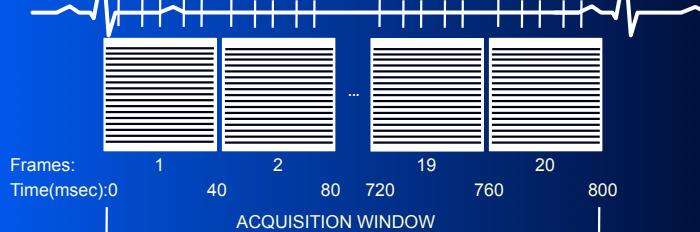
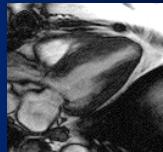
- ❑ Cine image is a series of 20-25 image frames at different points in the cardiac cycle that are played one after another to create a "movie"

Frames: 1 40 2 80 19 720 20 760 800

Time(msec): 0 40 80 19 720 20 760 800

CINE IMAGES

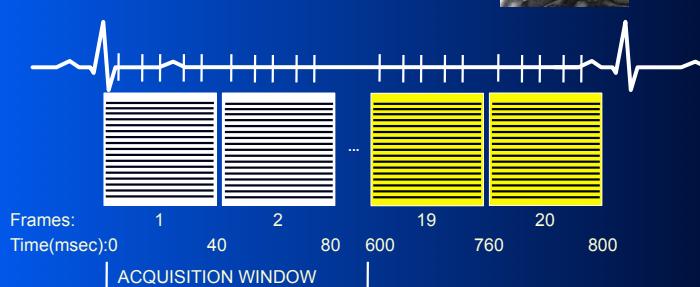
Methodist
DeBakey Heart
& Vascular Center



What is wrong with this image ?

ECG GATING with segmentation

Methodist
DeBakey Heart
& Vascular Center

- ❑ Cine image is a series of 20-25 image frames at different points in the cardiac cycle that are played one after another to create a "movie"

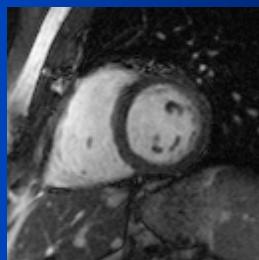

Frames: 1 40 2 80 19 720 20 760 800

ACQUISITION WINDOW

ECG GATING with segmentation

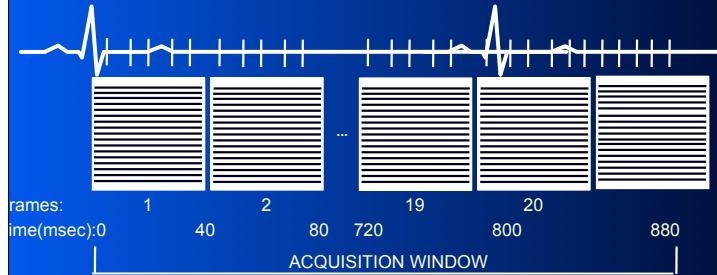
Methodist
DeBakey Heart
& Vascular Center

- ❑ ACQUISITION WINDOW IS TOO SHORT
- ❑ MOVIE IS MISSING THE LAST FEW FRAMES OF THE CARDIAC CYCLE

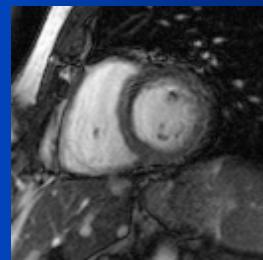

Frames: 1 40 2 80 19 760 20 800

ACQUISITION WINDOW

CINE IMAGES

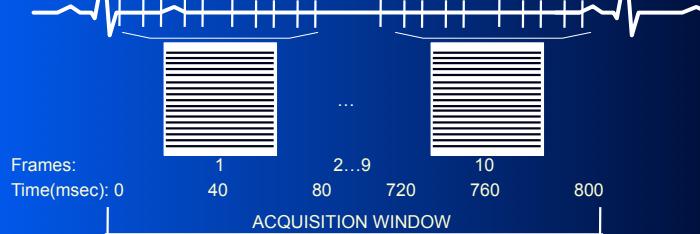
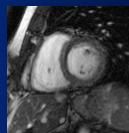

Methodist
DeBakey Heart
& Vascular Center

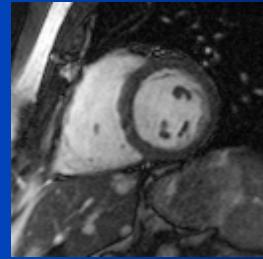
What is wrong with this image ?



ECG GATING with segmentation

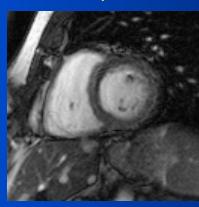
- ACQUISITION WINDOW IS SET TOO LONG
- MOVIE CONSISTS OF EXTRA FRAMES FROM NEXT CARDIAC CYCLE



What is wrong with this image ?


Answer: Poor temporal resolution

ECG GATING with segmentation

- POOR TEMPORAL RESOLUTION
- EACH FRAME IS ACQUIRED OVER A LONG TIME PERIOD
- NOT ENOUGH FRAMES IN THE MOVIE


What is wrong with this image ?

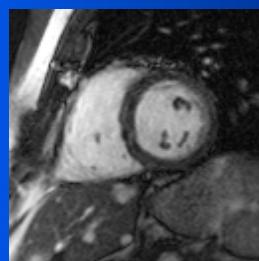
Answer: Nothing is wrong, but it has
Very High Temporal Resolution

Will there be a difference in breath hold time ?

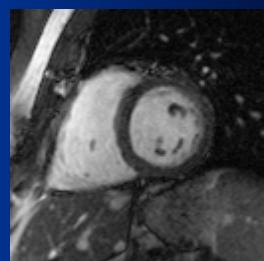
Example A

Poor Temporal
Resolution

Example B



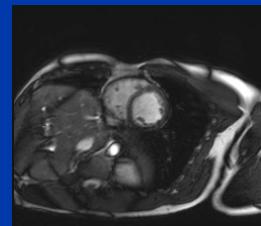
High Temporal
Resolution


YES - Example B will be a longer breath hold than A

CINE IMAGES

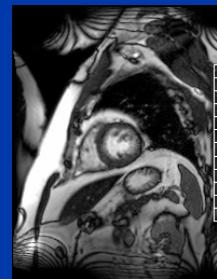
What is the difference in breath hold time ?

Acquisition Window Too Short


Acquisition Window Too Long

☒ Segmented Image Acquisition with cardiac gating:

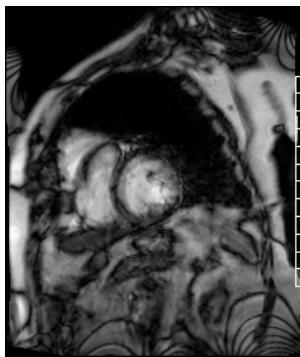
- ☒ Allows us to acquire high spatial and temporal resolution functional information about the beating heart
- ☒ Requires adequate method of ECG gating
- Requires ability to breath hold in most cases


Breathing Artifact or Arrhythmia ?

Patient A

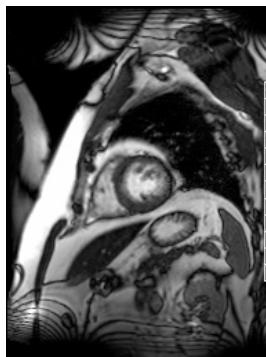
Breathing artifact

Patient B



Arrhythmia

20


Breathing Artifact or Arrhythmia ?

Patient A

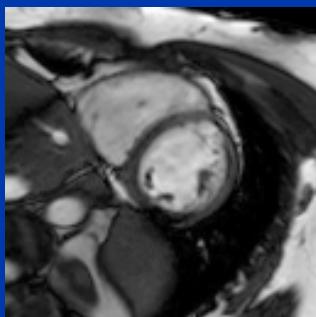
Breathing artifact

Patient B

Arrhythmia

Arrhythmias

☒ Occur when there is RR variability

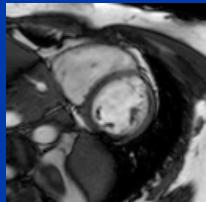

- ☒ Atrial fibrillation
- ☒ Ventricular ectopy

☒ Classify arrhythmia as

- ☒ Regularly irregular
- ☒ Irregularly irregular

22

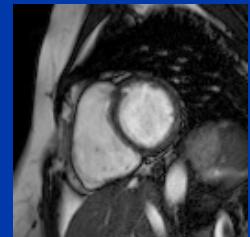
Ventricular Bigeminy


23

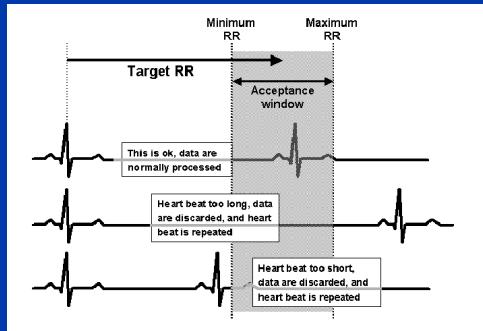
Use Prospective Triggering

24

Ventricular Bigeminy

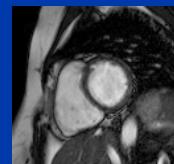


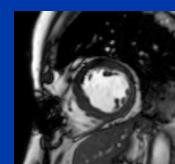
Retrospective Gating


Prospective Gating
with 2 RR intervals

Irregularly Irregular

Poor Image Quality

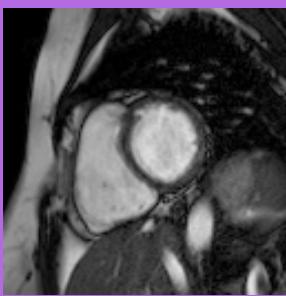
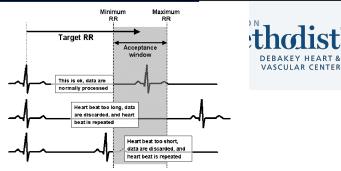

Arrhythmia Rejection


Irregularly Irregular

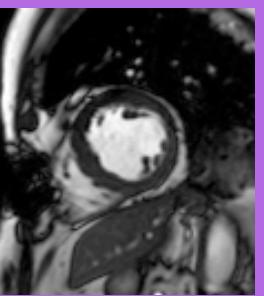
Strategies:

- Arrhythmia Rejection

Poor Image
Quality

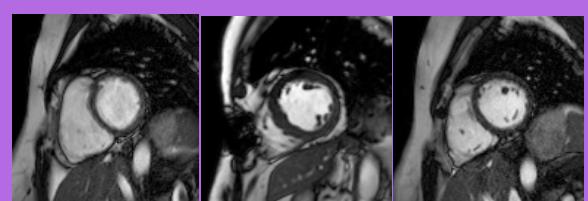
Arrhythmia
Rejection


Limitations:

- Abnormal beat is rejected
- Leads to increased breath hold time
- Not feasible if there are many irregular beats

Overcoming Arrhythmia

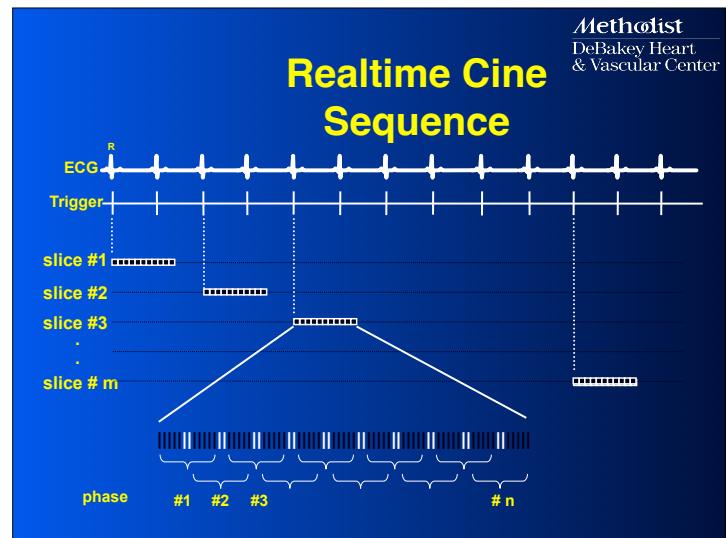
Poor Image Quality

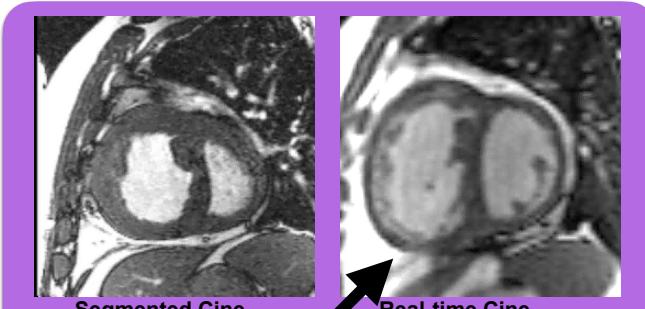


Arrhythmia Rejection

ARRHYTHMIAS

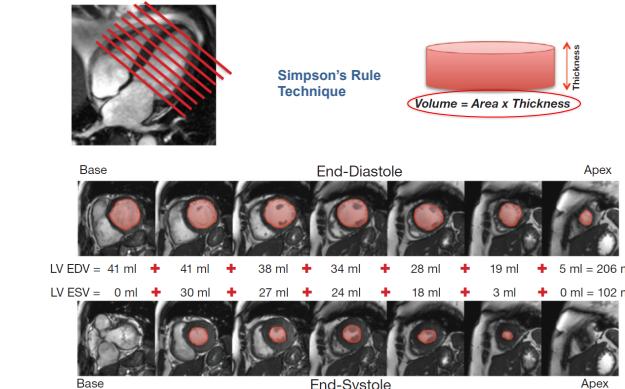
Strategies:


- Arrhythmia Rejection

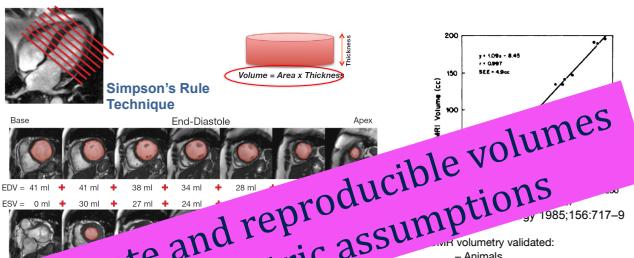

Poor Image Quality Arrhythmia Rejection Prospective with
short RR interval

The logo for Houston Methodist DeBakey Heart & Vascular Center. It features the word "HOUSTON" in a small, all-caps serif font above the word "Methodist" in a large, bold, blue serif font. Below "Methodist" is a registered trademark symbol (TM). At the bottom, the words "DEBAKEY HEART & VASCULAR CENTER" are written in a smaller, all-caps serif font.

What about patients who have significant arrhythmias or who can't hold their breath ?



Realtime Cine


Do not let perfection be the enemy of the good.
CMR image quality should never be worse than this !!

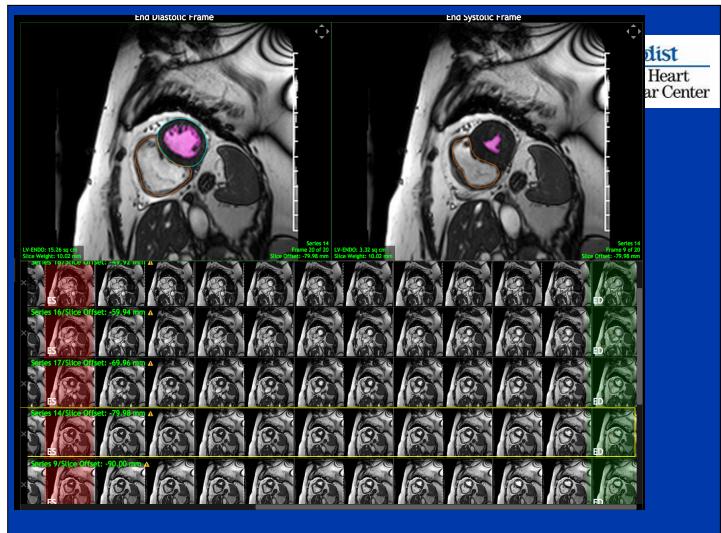
SSFP: Ventricular Volumes & Function

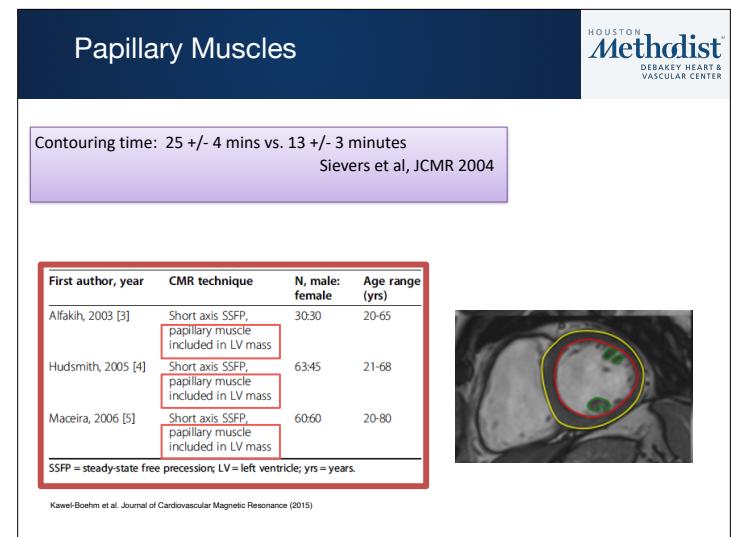
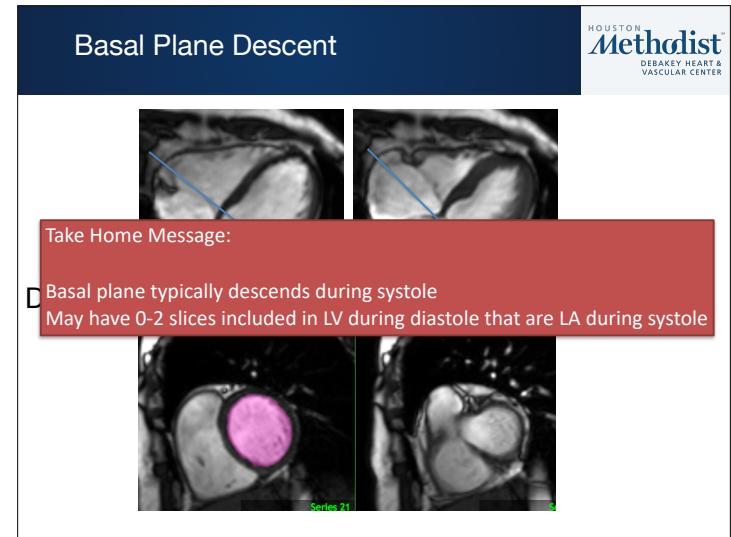
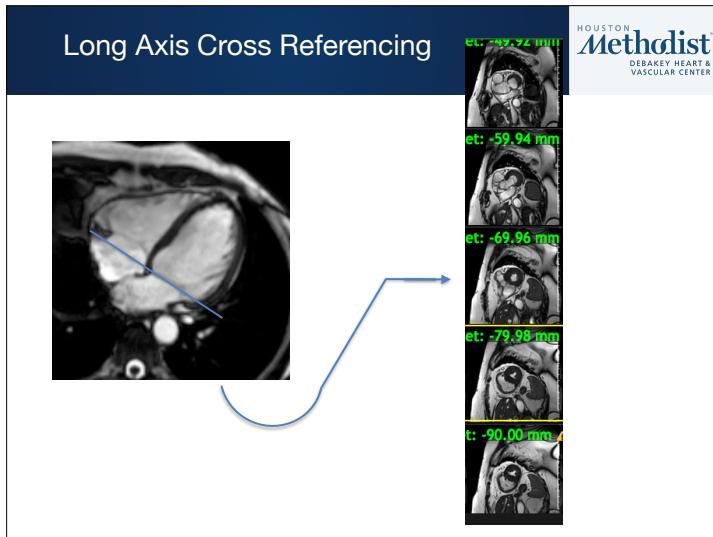
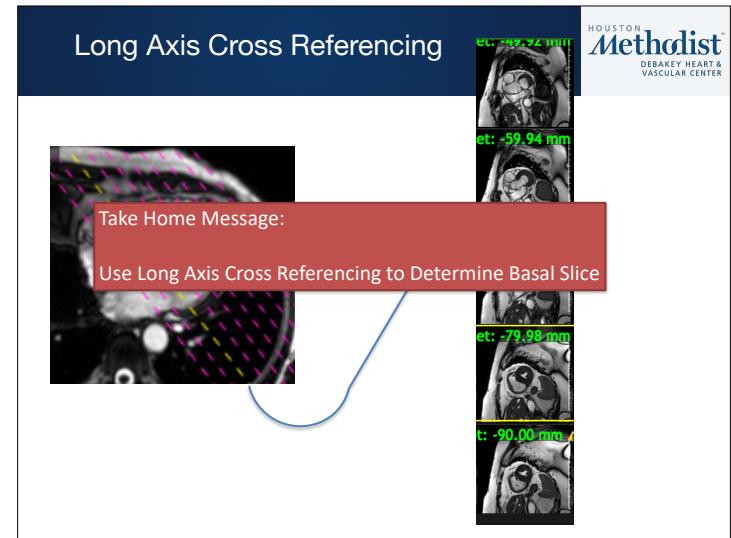
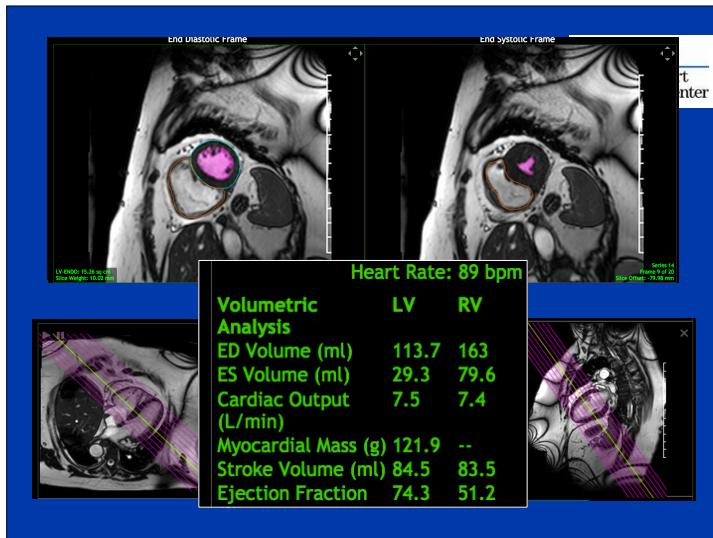
Shah. Curr Opin Cardiol 2012, 27:485–491

SSFP: Ventricular Volumes & Function

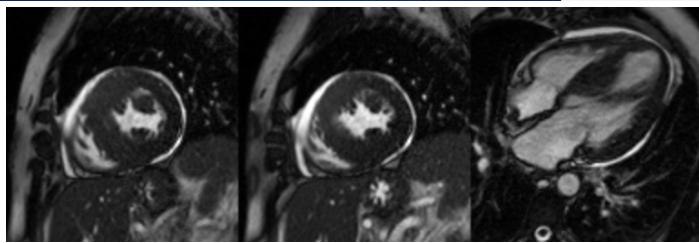
Base End-Diastole Apex

EDV = 41 ml + 38 ml + 34 ml + 28 ml


ESV = 0 ml + 30 ml + 27 ml + 24 ml

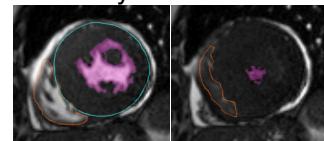





by 1985; 156:717-9

- **umptr** 1985;156:717
• **Wirt volumetry validated:**
 - Animals
 - In vitro
 - In vivo
 - Ex vivo
- **Superior to ECHO**
 - Highly accurate
 - Highly reproducible
 - Low intra-observer variability
 - Low inter-observer variability
 - LVEF: 2-7%
 - Low inter-study variability


Open Cardiol 2013; 37:485-491

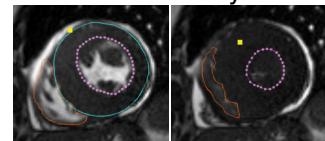
Pattynama PM. Radiology 1993;187:261-8.
Semelka RC. Am Heart J 1990;119:1367-73.

Papillary Muscle Attribution:


What is the LV Ejection Fraction here ?

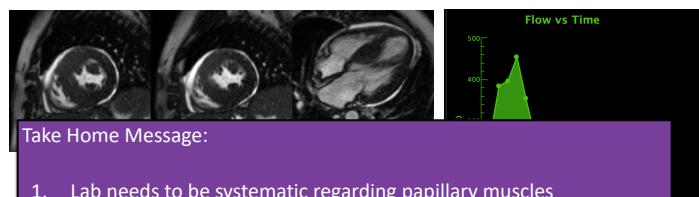
- A. LVEF < 60%
- B. LVEF 60-69%
- C. LVEF ≥70%

Papillary Muscle Attribution:


Myocardium

Send to Report

Volumetric Analysis LV	
ED Volume (mL)	130
ES Volume (mL)	26
Cardiac Output (L/min)	7.18
Myocardial Mass (g)	259
Stroke Volume (mL)	104
Ejection Fraction (%)	80


Blood Cavity

Send to Report

Volumetric Analysis LV	
ED Volume (mL)	142
ES Volume (mL)	53
Cardiac Output (L/min)	6.14
Myocardial Mass (g)	247
Stroke Volume (mL)	89
Ejection Fraction (%)	63

Papillary Muscle Attribution:

Take Home Message:

1. Lab needs to be systematic regarding papillary muscles
2. We including papillary muscles in myocardium (excluding from blood volume)

Is there Mitr Regurgitation ?

Mitral Regurgitation = LVSF - AO Forward Flow

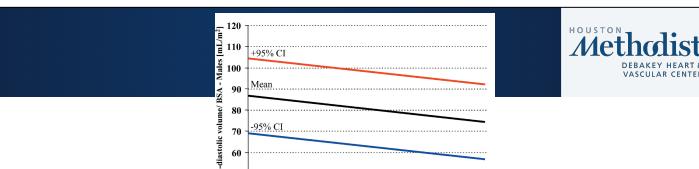


Table 4. All subjects: Left ventricular volumes, systolic function and mass (absolute and indexed to body surface area) by age decile (mean, 95% confidence interval)

All subjects	Absolute values				
	20-29 years	30-39 years	40-49 years	50-59 years	60-69 years
EDV [mL] SD 21	153 (112, 193)	149 (108, 189)	144 (104, 185)	140 (100, 181)	136 (96, 177)
ESV [mL] SD 10	53 (32, 73)	50 (30, 71)	48 (28, 69)	44 (26, 67)	42 (24, 65)
SV [mL] SD 14	100 (72, 126)	98 (70, 126)	96 (66, 124)	94 (66, 122)	90 (64, 120)
EF [%] SD 4.6	66 (57, 74)	66 (57, 74)	67 (58, 76)	67 (59, 77)	67 (60, 77)
Mass [g] SD 19	127 (90, 164)	127 (90, 164)	127 (90, 164)	127 (90, 164)	127 (90, 164)
EDV /BSA [mL/m ²] SD 8.8	84 (67, 101)	81 (64, 98)	76 (62, 96)	74 (59, 93)	71 (57, 91)
ESV /BSA [mL/m ²] SD 6.2	55 (40, 67)	54 (40, 66)	52 (40, 65)	51 (39, 63)	49 (37, 62)
SV /BSA [mL/m ²] SD 6.2	69 (53, 85)	69 (53, 84)	68 (53, 84)	68 (52, 84)	68 (52, 84)

EDV, End-Diastolic Volume; ESV, End-Systolic Volume; SV, Stroke Volume; EF, Ejection Fraction; BSA, Body Surface Area; SD, Standard Deviation.

Maceria et al. Journal of Cardiovascular Magnetic Resonance 2016

LV EJECTION FRACTION

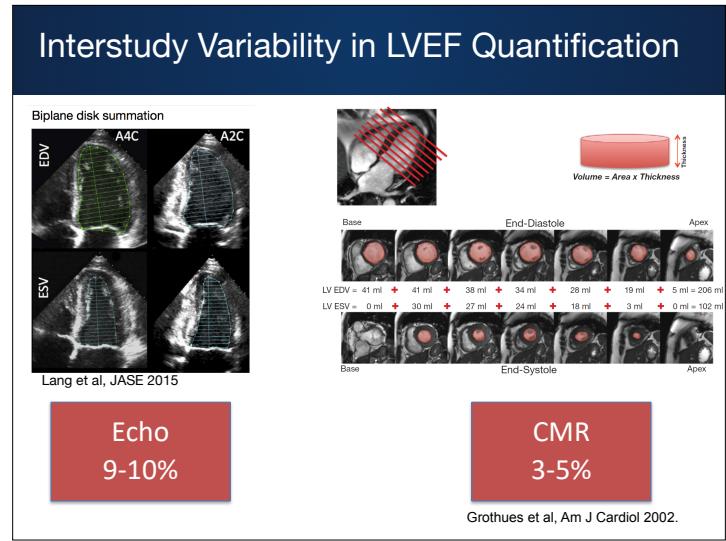
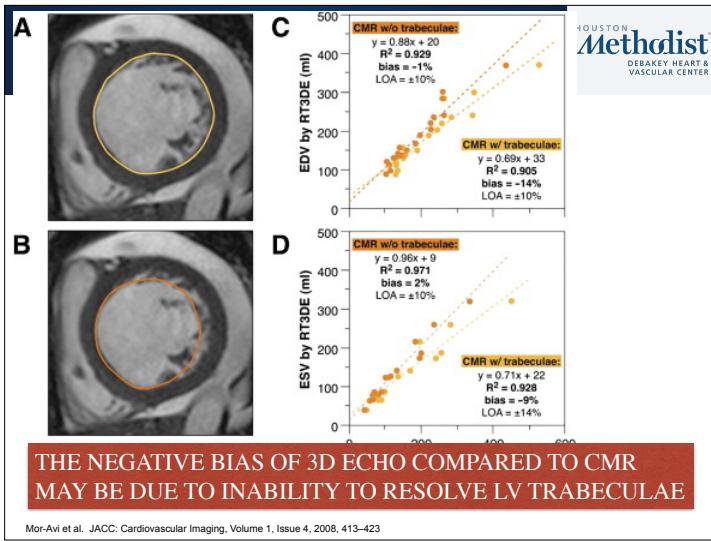
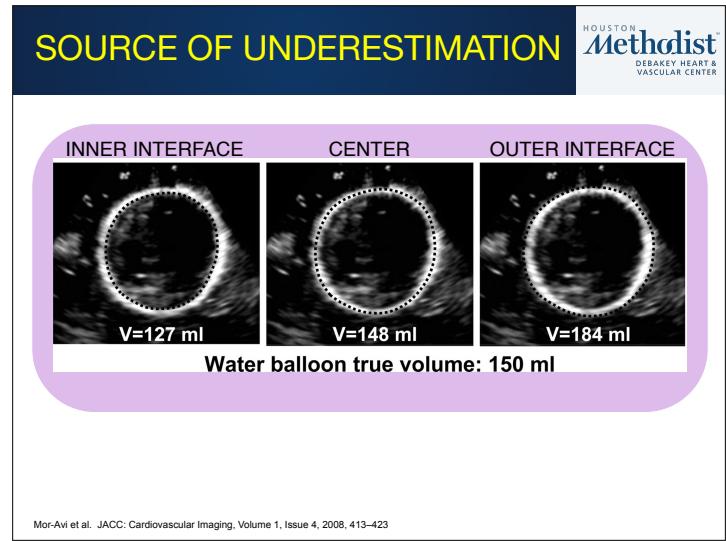
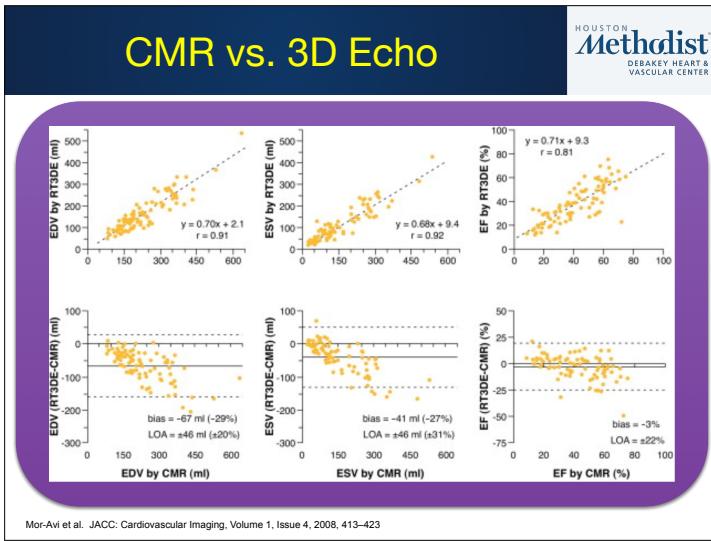
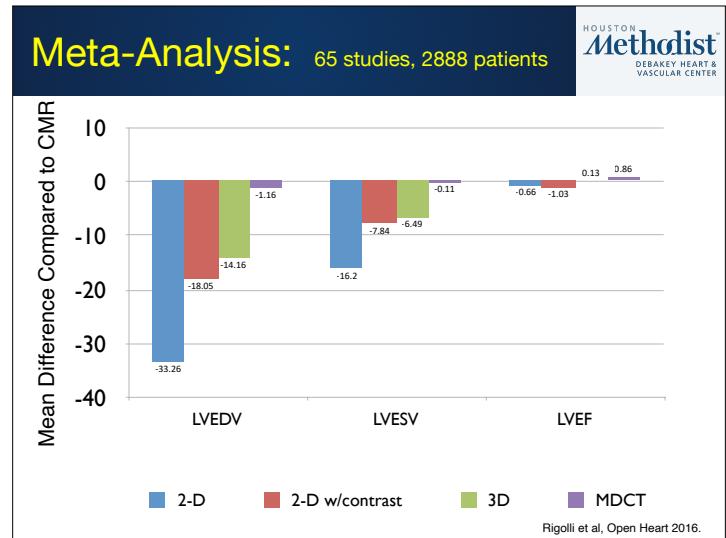
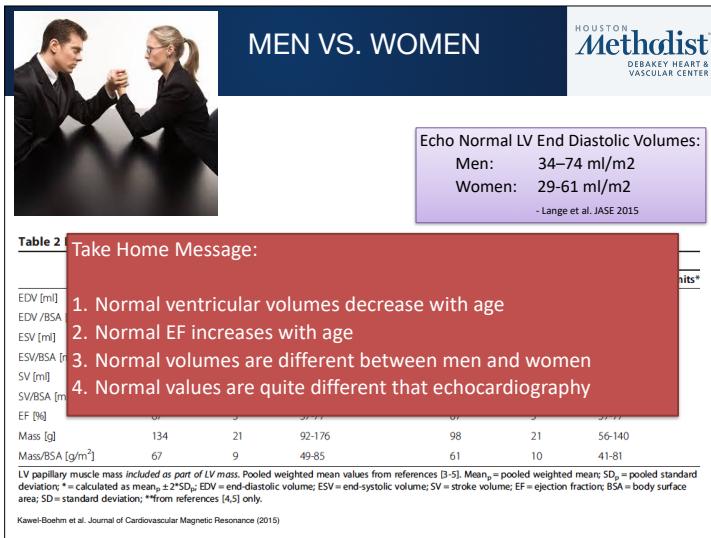
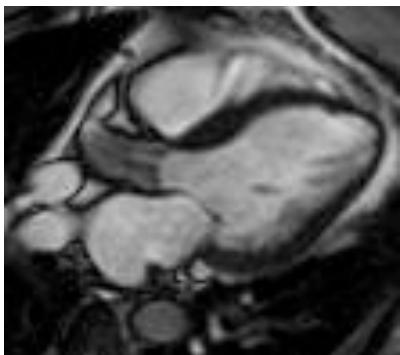







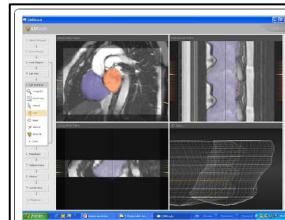
Table 4. All subjects: Left ventricular volumes, systolic function and mass (absolute and indexed to body surface area) by age decile (mean, 95% confidence interval)

All subjects	20-29 years	30-39 years	40-49 years	50-59 years	60-69 years	70-79 years
EDV [mL] SD 21	153 (112, 193)	149 (108, 189)	144 (104, 185)	140 (100, 181)	136 (96, 177)	132 (91, 172)
ESV [mL] SD 10	53 (32, 73)	50 (30, 71)	48 (28, 69)	44 (26, 67)	46 (24, 65)	42 (21, 62)
SV [mL] SD 14	100 (72, 126)	98 (70, 126)	96 (66, 124)	94 (66, 122)	94 (68, 124)	92 (64, 120)
EF [%] SD 4.6	66 (57, 74)	66 (57, 74)	67 (58, 76)	67 (59, 77)	68 (60, 77)	69 (60, 77)
Mass [g] SD 19	127 (90, 164)	127 (90, 164)	127 (90, 164)	127 (90, 164)	127 (90, 164)	127 (90, 164)
Indexed to body surface area						
EDV /BSA [mL/m ²] SD 8.8	84 (67, 101)	81 (64, 98)	79 (62, 96)	76 (59, 93)	74 (57, 91)	71 (54, 88)
ESV /BSA [mL/m ²] SD 5.1	29 (19, 39)	28 (18, 38)	26 (16, 36)	25 (15, 35)	24 (14, 34)	22 (12, 32)
SV /BSA [mL/m ²] SD 6.2	55 (43, 67)	54 (42, 66)	52 (40, 65)	51 (39, 63)	50 (38, 62)	49 (37, 61)
Mass /BSA [g/m ²] SD 8.1	69 (53, 85)	69 (53, 84)	68 (53, 84)	68 (53, 84)	68 (52, 84)	68 (52, 84)

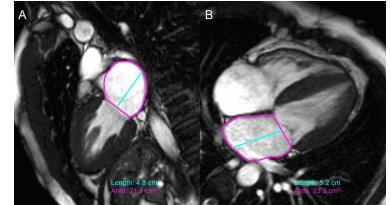

EDV, End-Diastolic Volume; ESV, End-Systolic Volume; SV, Stroke Volume; EF, Ejection Fraction; BSA, Body Surface Area; SD, Standard Deviation.

Maceria et al. Journal of Cardiovascular Magnetic Resonance 2016

Left Atrium


HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

Left Atrial Volumes


HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

3D Modeling Approach

Maceira et al. Journal of Cardiovascular Magnetic Resonance 2010; 12:65

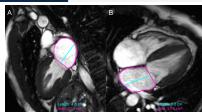
Biplane Area-length Method

$$\text{Left Atrial Volume} = \frac{8/3 \pi}{(A_1)(A_2)} (L)$$

A1 = Area 2 Chamber
A2 = Area 4 Chamber
L = Shortest Atrial Length

Khan et al. Journal of Cardiovascular Magnetic Resonance 2019

Left Atrial Volumes


HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

Khan et al. Journal of Cardiovascular Magnetic Resonance (2019) 21:4
<https://doi.org/10.1186/s12968-018-0517-0>

Journal of Cardiovascular
Magnetic Resonance

RESEARCH

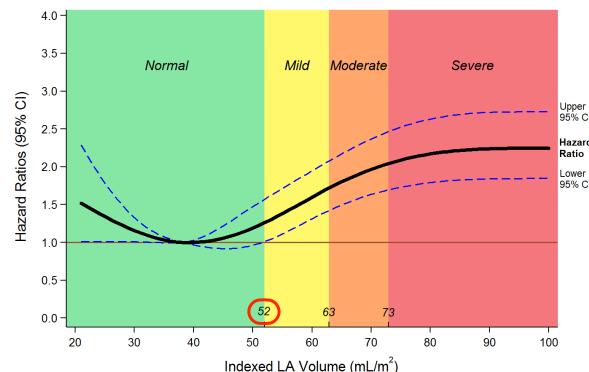
Open Access

Association of left atrial volume index and all-cause mortality in patients referred for routine cardiovascular magnetic resonance: a multicenter study

Mohammad A. Khan¹✉, Eric Y. Yang¹, Yang Zhan¹, Robert M. Judd², Wenyaw Chan³, Faisal Nabi¹, John F. Helmer², Raymond J. Kim⁴, Igor Klem⁵, Sherif F. Naghib¹ and Dipan J. Shah^{1*}

CMR Upper Limits Normal LA Volume Index:
Men - 52 mL/m²
Women - 52 mL/m²

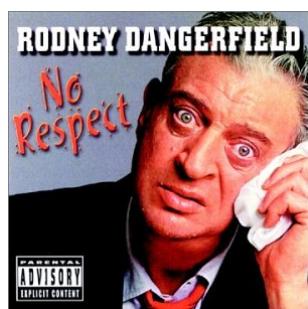
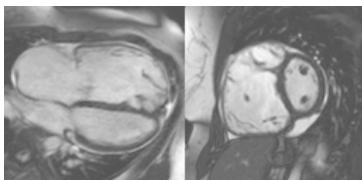
Khan et al. Journal of Cardiovascular Magnetic Resonance 2019


The upper normal limit for 2D echocardiographic LA volume is 34 mL/m² for both genders.

Lange et al. JASE 2015

LA Volumes and Outcomes

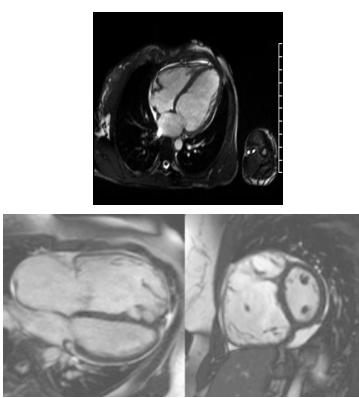
HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

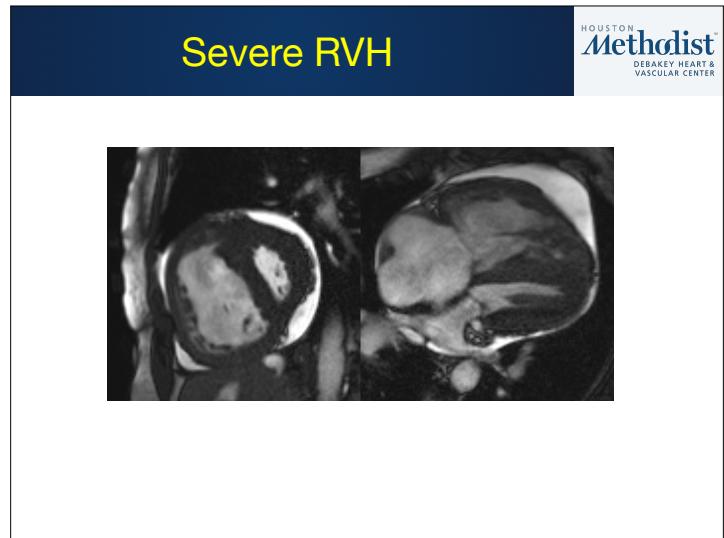
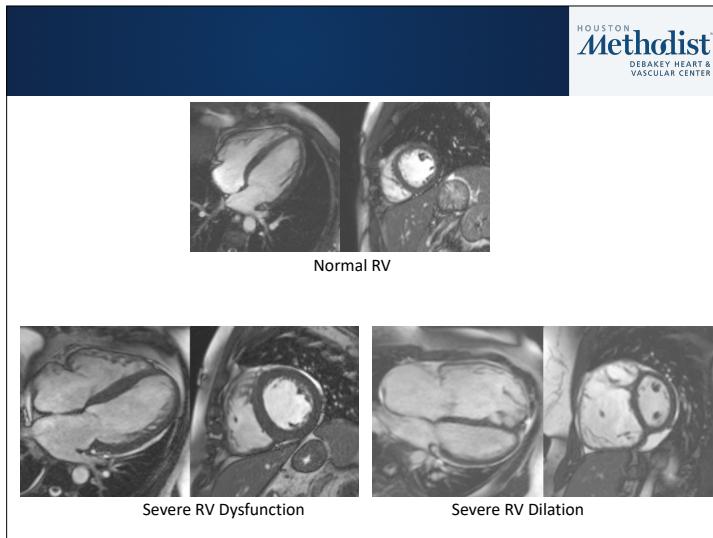


Mortality Risk

Khan et al. Journal of Cardiovascular Magnetic Resonance 2019

Right Ventricle

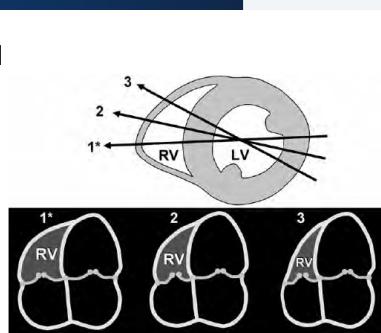
- The forgotten ventricle

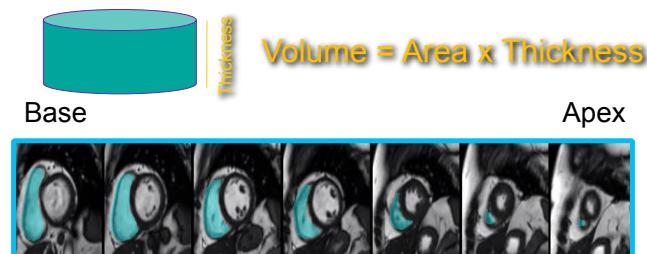




CMR Imaging for the Right Heart

HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

Advantages:

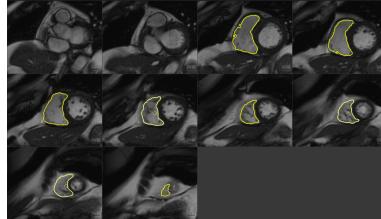

- Large FOV
- Intra/extracardiac anatomy
- Unlimited imaging planes for the RV
- Superior image resolution
- Tissue characterization
 - Fibrosis, inflammation, scar, fat, thrombus
- Volumetric based technique: RV volumes, RVEF and Regurg Vol/RF


What is the ideal way to assess the RV:

- Complete endocardial definition
- Quantitative methods that do not require geometry assumptions
- Reproducibility
- Established reference normal values

Rudski. J Am Soc Echocardiogr 2010;23:685-713

CMR for Right Heart Volumes & Function



40 ml 32 ml 27 ml 25 ml 20 ml 10 ml 5 ml

RV EDV = 159 ml

CMR May Be The Reference Standard for Right Heart Volumes & Function

- Highly accurate
- Highly reproducible
- Low variability
 - intra-observer
 - inter-observer
 - Low inter-study (5-6%)

Accurate RV volumes & EF can aid in:

1. Initial clinical assessment of the impact of PI/TR
2. Long term with serial measurements

Box LM. *J Thorac Imaging* 1993;8:92-7.
Doherty NE III. *Am J Cardiol* 1992;69:1223-8.
Katz J. *J Am Coll Cardiol* 1993;21:1475-81.
Pattynama PM. *Magn Reson Imaging* 1995;13:53-63.
Rominger MB. *J Magn Reson Imaging* 1999;10:908-1.

Reference RV Values Normalized to Age, Gender and Body Surface Area

Table 8 RV summary data for all ages (mean \pm SD, 95% confidence interval)			
	All	Males	Females
EDV (mL)	144 \pm 23 (98, 190)	163 \pm 25 (113, 213)	126 \pm 21 (84, 168)
EDV/BSA (mL/m ²)	82 \pm 11 (57, 99)	83 \pm 12 (60, 106)	73 \pm 9 (55, 92)
ESV (mL)	50 \pm 14 (22, 78)	57 \pm 15 (27, 86)	43 \pm 13 (17, 69)
ESV/BSA (mL/m ²)	27 \pm 7 (13, 41)	29 \pm 7 (14, 43)	25 \pm 7 (12, 38)
SV (mL)	94 \pm 15 (64, 124)	106 \pm 17 (72, 140)	83 \pm 13 (57, 108)
SV/BSA (mL/m ²)	51 \pm 7 (37, 65)	54 \pm 8 (38, 70)	48 \pm 6 (36, 60)
EF (%)	66 \pm 6 (54, 78)	66 \pm 6 (53, 78)	66 \pm 6 (54, 78)
EF/BSA (%/m ²)	36 \pm 5 (27, 45)	34 \pm 4 (26, 41)	39 \pm 5 (29, 49)
Mass (g)	48 \pm 13 (23, 73)	66 \pm 14 (38, 94)	48 \pm 11 (27, 69)
Mass/BSA (g/m ²)	31 \pm 6 (19, 43)	34 \pm 7 (20, 47)	28 \pm 5 (18, 38)

NORMAL RV VOLUMES DIFFER BETWEEN MEN AND WOMEN

Maceira *et al.* European Heart Journal (2006) 27, 2879–2888

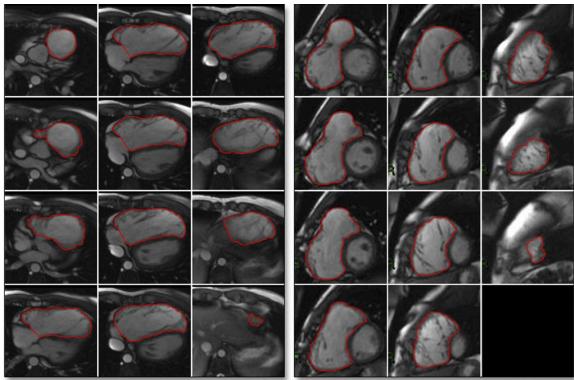
Reference RV Values Normalized to Age, Gender and Body Surface Area

Table 2: Males: RV volumes, systolic function and mass (absolute and normalized to BSA) by age decile (mean, 95% confidence interval)

Age (years)	20-29	30-39	40-49	50-59	60-69	70-79
Absolute values						
EDV (mL)	152.4	177 (127, 227)	171 (121, 221)	166 (116, 216)	160 (111, 210)	155 (105, 205)
ESV (mL)	SD 15.2	68 (38, 98)	64 (34, 94)	59 (29, 89)	55 (25, 85)	50 (20, 80)
SV (mL)	SD 17.4	108 (74, 143)	108 (74, 142)	107 (73, 141)	106 (72, 140)	105 (71, 139)
EF (%)	SD 6.5	61 (48, 74)	63 (50, 76)	65 (52, 77)	66 (53, 79)	68 (55, 81)
Mass (g)	SD 14.4	70 (42, 99)	69 (40, 97)	67 (39, 95)	65 (37, 94)	63 (35, 92)
Normalized to BSA						
EDV/BSA (mL/m ²)	SD 11.7	91 (68, 114)	88 (65, 111)	85 (62, 108)	82 (59, 105)	79 (56, 101)
ESV/BSA (mL/m ²)	SD 7.4	39 (21, 50)	33 (16, 47)	30 (16, 45)	28 (15, 42)	25 (11, 40)
SV/BSA (mL/m ²)	SD 8.2	56 (40, 72)	55 (39, 71)	55 (39, 71)	54 (38, 70)	53 (37, 69)
EF/BSA (%/m ²)	SD 4	32 (24, 40)	32 (25, 40)	33 (25, 41)	34 (26, 42)	35 (27, 43)
Mass/BSA (g/m ²)	SD 4	44 (30, 58)	44 (30, 58)	44 (30, 58)	44 (30, 58)	44 (30, 58)

NORMAL RV VOLUMES CHANGE WITH AGE

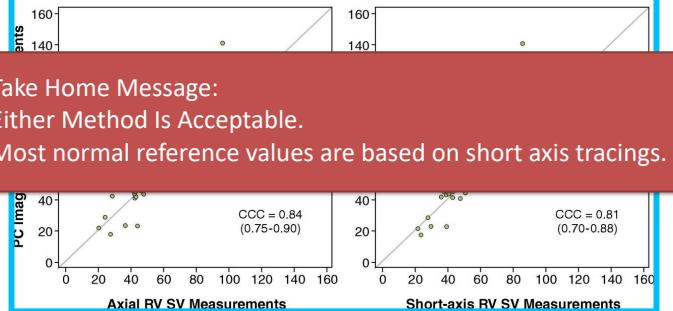
Table 3: Females: RV volumes, systolic function and mass (absolute and normalized to BSA) by age decile (mean, 95% confidence interval)


Age (years)	20-29	30-39	40-49	50-59	60-69	70-79
Absolute values						
EDV (mL)	152.4	177 (127, 227)	171 (121, 221)	166 (116, 216)	160 (111, 210)	155 (105, 205)
ESV (mL)	SD 15.2	68 (38, 98)	64 (34, 94)	59 (29, 89)	55 (25, 85)	50 (20, 80)
SV (mL)	SD 17.4	108 (74, 143)	108 (74, 142)	107 (73, 141)	106 (72, 140)	105 (71, 139)
EF (%)	SD 6.5	61 (48, 74)	63 (50, 76)	65 (52, 77)	66 (53, 79)	68 (55, 81)
Mass (g)	SD 14.4	70 (42, 99)	69 (40, 97)	67 (39, 95)	65 (37, 94)	63 (35, 92)
Normalized to BSA						
EDV/BSA (mL/m ²)	SD 11.7	91 (68, 114)	88 (65, 111)	85 (62, 108)	82 (59, 105)	79 (56, 101)
ESV/BSA (mL/m ²)	SD 7.4	39 (21, 50)	33 (16, 47)	30 (16, 45)	28 (15, 42)	25 (11, 40)
SV/BSA (mL/m ²)	SD 8.2	56 (40, 72)	55 (39, 71)	55 (39, 71)	54 (38, 70)	53 (37, 69)
EF/BSA (%/m ²)	SD 4	32 (24, 40)	32 (25, 40)	33 (25, 41)	34 (26, 42)	35 (27, 43)
Mass/BSA (g/m ²)	SD 4	44 (30, 58)	44 (30, 58)	44 (30, 58)	44 (30, 58)	44 (30, 58)

Maceira. European Heart Journal (2006) 27, 2879-2888

Axial vs. Short Axis Tracing of RV

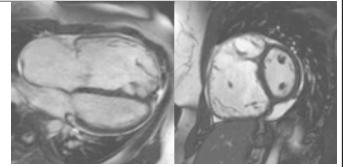
Christopher J. Clarke et al. JIMG 2012;5:28-37



Axial vs. Short Axis Tracing of RV

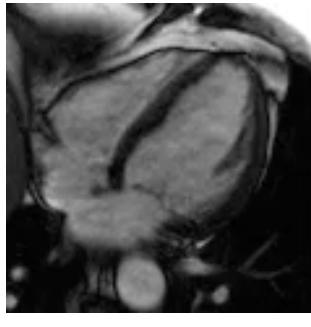
Axial Contours

Short-axis Contours



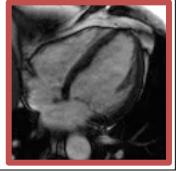
Reproducibility of Ventricular Size and Function Measured by CMR

	Mooij et al ¹²	Grothues et al ¹⁴	Hudsmith et al ¹⁵	Karamitsos et al (post-training) ¹⁶	Karamitsos et al (expert) ¹⁶	Moon et al ¹⁷
No. of patients	60	60	12	10	10	20
Diagnosis	Normal/ASD/TOF	Normal/CHF/ LHV	Normal	Normal	Normal	Normal/CHF
CMR technique	SSFP	FLASH	SSFP	SSFP	SSFP	SSFP
Right ventricle, %						
EDV	6.4	6.2	9.6			
ESV	13.0	14.1				
EF	8.0	8.3	10.7			
Mass	11.3	8.7				
Left ventricle, %						
EDV	3.6		2.7	4.6	2.6	2.6
ESV	10.5			7.4	6.9	10.5
EF	5.8		3.3	3.7	2.9	6
Mass	5.3		5.2	6.7	5.8	6


Reproducibility of RV Measurements by CMR is robust, but not as robust as for the LV

LA Volumes

- Generally the left atrial appendage is included as part of the left atrial volume while the pulmonary veins are excluded.
- The maximal left atrial volume is achieved during ventricular systole.
- Using cine images, the maximum volume can be defined as last image before opening of the mitral valve.
- Accordingly the minimal left atrial volume can be defined as first image after closure of the mitral valve.



SUMMARY:

- CMR MAY BE THE REFERENCE STANDARD FOR VOLUMES AND EF
 - Optimal image quality
 - Limited need for geometric assumptions
- ESTABLISHED NORMAL VOLUMES AND EF
 - Vary with age and gender
- CMR NORMAL VOLUMES DIFFER FROM ECHO

Thank you for your attention
Dipan J. Shah, MD, FACC
djshah@houstonmethodist.org

Echo is a great technique, but

HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

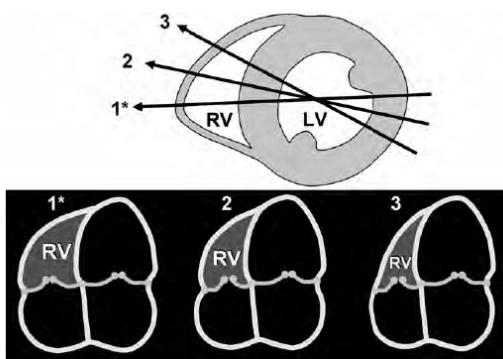
CONCLUSION

HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

- Assessment of complex congenital heart disease including anomalies of coronary circulation, great vessels, and cardiac chambers and valves
- Procedures may include LV/RV mass and volumes, MR angiography, quantification of valvular disease, and contrast enhancement
- Evaluation of LV function following myocardial infarction OR in heart failure patients
- Patients with technically limited images from echocardiogram
- Quantification of LV function
- Discordant information that is clinically significant from prior tests

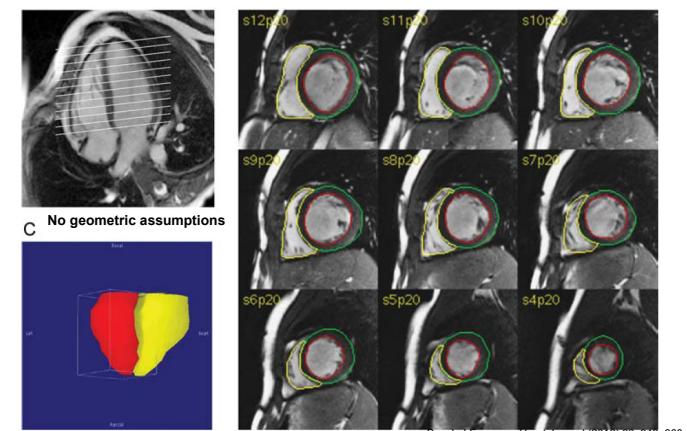
A (9)

A (8)


A (8)

Thank you for your attention
Dipan J. Shah, MD, FACC
djshah@houstonmethodist.org

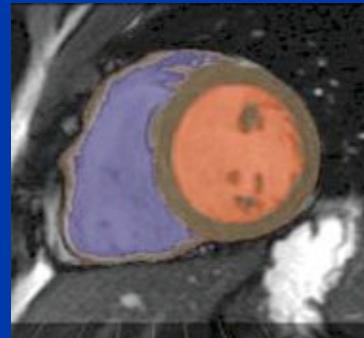
Will the real RV please stand up:


HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

Rudski. J Am Soc Echocardiogr 2010;23:685-713

CMR is Reference Standard for Right Heart Volumes, Mass, Function

HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER



Buechel. European Heart Journal (2012) 33, 949-960

CMR is Reference Standard for Right Heart Volumes, Mass, Function

RV Volumes

Methodist
DeBakey Heart
& Vascular Center

- Assessment of complex congenital heart disease including anomalies of coronary circulation, great vessels, and cardiac chambers and valves
- Procedures may include LV/RV mass and volumes, MR angiography, quantification of valvular disease, and contrast enhancement
- Evaluation of LV function following myocardial infarction OR in heart failure patients
- Patients with technically limited images from echocardiogram
- Quantification of LV function
- Discordant information that is clinically significant from prior tests

A (9)

A (8)

A (8)

Buechel. European Heart Journal (2012) 33, 949-960

Maceira et al. European Heart Journal 2006.

Normal RV volumes

Methodist
DeBakey Heart
& Vascular Center

Age (years)	20-29	30-39	40-49	50-59	60-69	70-79
Absolute values						
EDV (mL) SD 25.4	177 (127, 227)	171 (121, 221)	166 (116, 216)	160 (111, 210)	155 (105, 205)	150 (100, 200)
ESV (mL) SD 15.2	68 (38, 98)	64 (34, 94)	59 (29, 89)	55 (25, 85)	50 (20, 80)	46 (16, 76)
SV (mL) SD 17.4	108 (74, 143)	108 (74, 142)	107 (73, 141)	106 (72, 140)	105 (71, 139)	104 (70, 138)
EF (%) SD 6.5	61 (48, 74)	63 (50, 76)	65 (52, 77)	66 (53, 79)	68 (55, 81)	70 (57, 83)
Mass (g) SD 14.4	70 (42, 99)	69 (40, 97)	67 (39, 95)	65 (37, 94)	63 (35, 92)	62 (33, 90)
Normalized to BSA						
EDV/BSA (mL/m ²) SD 11.7	91 (68, 114)	88 (65, 111)	85 (62, 108)	82 (59, 105)	79 (56, 101)	75 (52, 98)
ESV/BSA (mL/m ²) SD 7.4	35 (21, 50)	33 (18, 47)	30 (16, 45)	28 (13, 42)	25 (11, 40)	23 (8, 37)
SV/BSA (mL/m ²) SD 8.2	56 (40, 72)	55 (39, 71)	55 (39, 71)	54 (38, 70)	53 (37, 69)	52 (36, 69)
EF/BSA (%) SD 4	32 (24, 40)	32 (25, 40)	33 (25, 41)	34 (26, 42)	35 (27, 42)	35 (27, 43)
Mass/BSA (g/m ²) SD 6.8	36 (23, 50)	35 (22, 49)	34 (21, 48)	33 (20, 46)	32 (19, 45)	31 (18, 44)

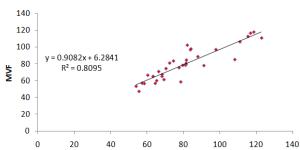
Maceira et al. European Heart Journal 2006.

Normal LV Volumes

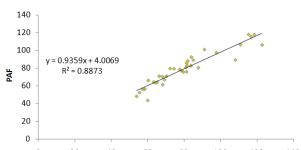
Methodist
DeBakey Heart
& Vascular Center

Table 2. LV and RV measurements in 108 healthy volunteers

	Mean \pm SD (n = 108)	Male (n = 63)	Female (n = 45)	p value
LV ejection fraction (%)	69 \pm 6	69 \pm 6 (57-81)	69 \pm 6 (57-81)	.80
LV mass (g)	112 \pm 27	123 \pm 21 (81-165)	96 \pm 27 (42-150)	< .001
LV mass index (g/m ²)	59.2 \pm 11	62.5 \pm 9.0 (45-81)	54.6 \pm 12 (31-79)	< .001
LV end-diastolic volume (mL)	150 \pm 31	160 \pm 29 (102-218)	139 \pm 26 (83-187)	< .001
LV end-diastolic volume index (mL/m ²)	80 \pm 13	82 \pm 13 (56-108)	78 \pm 12 (54-102)	.16
LV end-systolic volume (mL)	47 \pm 15	50 \pm 16 (18-82)	42 \pm 12 (18-66)	.007
LV end-systolic volume index (mL/m ²)	25 \pm 7	25 \pm 8 (0-41)	24 \pm 6 (12-36)	.53
LV stroke volume (mL)	104 \pm 21	112 \pm 19 (74-150)	91 \pm 16 (57-125)	< .001
LV stroke volume index (mL/m ²)	55 \pm 8	56 \pm 8 (40-72)	54 \pm 9 (32-72)	.12
RV ejection fraction (%)	61 \pm 6	59 \pm 6 (47-71)	63 \pm 5 (53-73)	.002
RV mass (g)	38 \pm 8	41 \pm 8 (25-57)	35 \pm 7 (21-49)	< .001
RV mass index (g/m ²)	20.3 \pm 3.6	20.6 \pm 3.7 (13-29)	20.0 \pm 3.5 (13-27)	.371
RV end-diastolic volume (mL)	173 \pm 59	180 \pm 33 (124-286)	148 \pm 35 (70-218)	< .001
RV end-diastolic volume index (mL/m ²)	91 \pm 16	96 \pm 15 (66-126)	84 \pm 17 (50-118)	< .001
RV end-systolic volume (mL)	69 \pm 22	78 \pm 20 (38-118)	56 \pm 18 (20-92)	< .001
RV end-systolic volume index (mL/m ²)	36 \pm 10	39 \pm 10 (19-59)	32 \pm 10 (12-52)	< .001
RV stroke volume (mL)	104 \pm 21	113 \pm 19 (75-151)	90 \pm 19 (52-128)	< .001
RV stroke volume index (mL/m ²)	55 \pm 9	57 \pm 8 (41-73)	53 \pm 9 (35-71)	.02


Values are given as mean \pm SD; reference ranges in brackets, calculated as \pm 2SD of the mean.

Hudsmith et al. Journal of Cardiovascular Magnetic Resonance 2005.


Correlation between RVSV and AOF in all patients

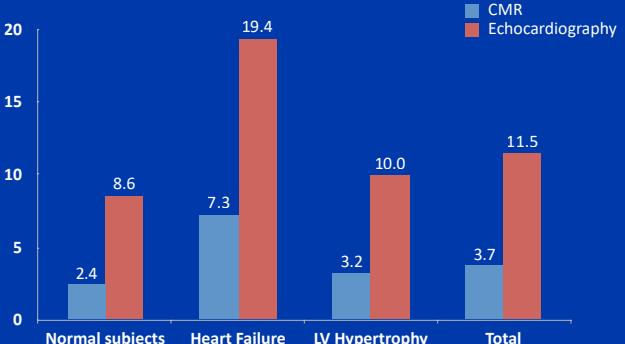
Correlation between RVSV and MVF in all patients

Correlation between RVSV and PAF in all patients

Sample Size

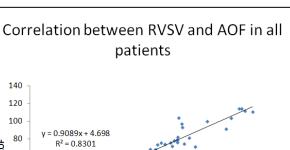
Methodist
DeBakey Heart
& Vascular Center

TABLE 3 Sample Sizes Required to Detect a Clinically Significant Change in End-Diastolic Volume, End-Systolic Volume, Ejection Fraction, and LV Mass (with a 90% power and an α error of 0.05)*

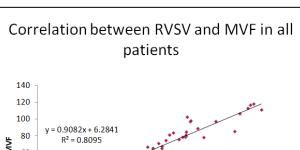

	Echocardiography		CMR		Reduction in Sample Size by CMR
	SD	Sample Size	SD	Sample Size	
Total study group	13.5	39	6.7	10	74%
10mL change in end-diastolic volume	14.0	42	5.4	7	83%
10mL change in end-systolic volume	13.1	37	4.9	6	84%
3% absolute change in ejection fraction	6.1	87	2.1	11	87%
10g change in LV mass	25.0	132	7.7	13	90%
Normal study group					
10mL change in end-diastolic volume	6.4	9	4.3	4	55%
10mL change in end-systolic volume	7.0	11	2.8	2	81%
10mL change in stroke volume	8.0	14	4.0	4	71%
3% absolute change in ejection fraction	5.6	73	1.7	7	90%
10g change in LV mass	15.9	54	4.2	4	93%
IV Hypertrophy					
10mL change in end-diastolic volume	17.6	66	7.6	13	80%
10mL change in end-systolic volume	19.7	82	7.4	12	85%
10mL change in stroke volume	18.0	69	5.5	8	88%
3% absolute change in ejection fraction	7.0	115	2.4	14	88%
10g change in LV mass	30.4	194	9.6	20	90%
LV Hypertrophy					
10mL change in end-diastolic volume	13.9	41	7.3	12	71%
10mL change in end-systolic volume	12.2	32	4.6	5	84%
10mL change in stroke volume	11.5	28	4.5	7	75%
3% absolute change in ejection fraction	5.9	82	2.2	12	85%
10g change in LV mass	26.9	152	8.4	15	90%

*Note that for studies comparing active treatment with placebo, these sample size numbers must be doubled.

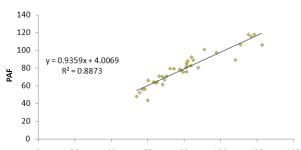
Grothues et al, Am J Cardiol 2002.

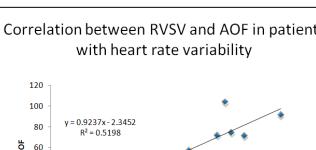

Coefficient of Variability

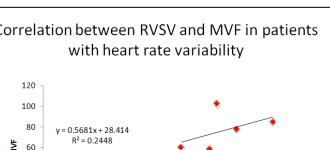
Methodist
DeBakey Heart
& Vascular Center

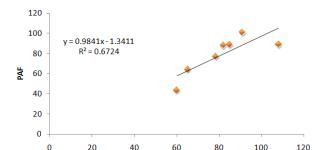


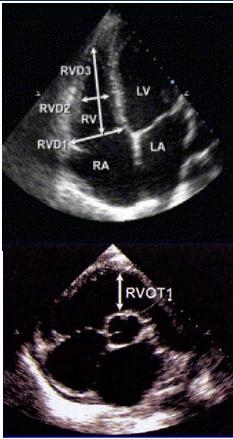
Grothues et al, Am J Cardiol 2002.


Correlation between RVSV and AOF in all patients


Correlation between RVSV and MVF in all patients


Correlation between RVSV and PAF in all patients


Correlation between RVSV and AOF in patients with heart rate variability


Correlation between RVSV and MVF in patients with heart rate variability

Correlation between RVSV and PAF in patients with heart rate variability

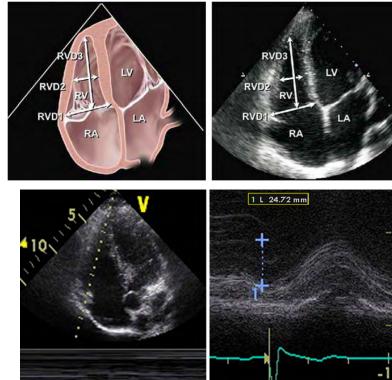
Echo Limitations for Right Heart Disease Assessment

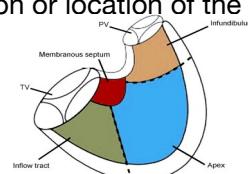
- TTE is first-line imaging study for RHD
- Limitations:
 - Poor imaging windows (location just behind the sternum)
 - Difficult to visualize:
 - Endocardial borders of the RV lateral wall and apex
 - Trabeculations
 - Pulmonic valve

Table 1 Summary of reference limits for recommended measures of right heart structure and function

Variable	Unit	Abnormal
Chamber dimensions		
RV basal diameter	cm	>4.2
RV subcostal wall thickness	cm	>0.5
RVOT PSAX distal diameter	cm	>2.7
RVOT PLAX proximal diameter	cm	>3.3
RA major dimension	cm	>5.3
RA minor dimension	cm	>4.4
RA end-systolic area	cm ²	>18
Systolic function		
TAPSE	cm	<1.6
Pulsed Doppler peak velocity at the annulus	cm/s	<10
Pulsed Doppler MPI	—	>0.40
Tissue Doppler MPI	—	>0.55
FAC (%)	%	<35
Diastolic function		
E/A ratio	—	<0.8 or >2.1
E/E' ratio	—	>6
Deceleration time (ms)	ms	<120

FAC, Fractional area change; MPI, myocardial μ ; PLAX, parasternal long-axis; PSAX, parasternal short-axis; RV, right ventricle; RVD, right ventricular outflow tract; TAPSE, tricuspid annular plane systolic excursion.



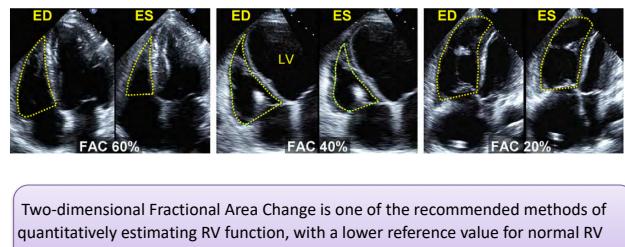

Figure 17 Measurement of tricuspid annular plane systolic excursion (TAPSE). Rudski. J Am Soc Echocardiogr 2010;23:685-713

ECHO: NO Accurate Method to Quantify RV Volumes and Function

- Difficulties in the estimation of RV volumes and function
 - crescentic shape of RV
 - separation between RV and left ventricle
 - no uniform geometric model for the right ventricle for measuring volumes
 - Cannot adequately image the right ventricle in a single view
 - Inability to measure the direction or location of the right ventricle in relation to the left ventricle

Two dimensionally derived estimation of RV EF is not recommended, because of the heterogeneity of methods and the numerous geometric assumptions.

Rudski. J Am Soc Echocardiogr 2010;23:685-713

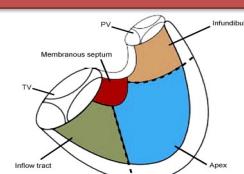

GUIDELINES AND STANDARDS

Guidelines for the Echocardiographic Assessment of the Right Heart in Adults: A Report from the American Society of Echocardiography

Endorsed by the European Association of Echocardiography, a registered branch of the European Society of Cardiology, and the Canadian Society of Echocardiography

Lawrence G. Rudski, MD, FASE; Chain, Wyman W. Lai, MD, MPH, FASE; Jonathan Afilalo, MD, MSc, Langi Hua, RDMS, FASE; Mark D. Handschumacher, BS, Krishnasamy Chandrasekaran, MD, FASE; Scott D. Solomon, MD, Eric K. Louie, MD, and Nelson B. Schiller, MD, *Montreal, Quebec, Canada; New York, New York; Boston, Massachusetts; Phoenix, Arizona; London, United Kingdom; San Francisco, California*

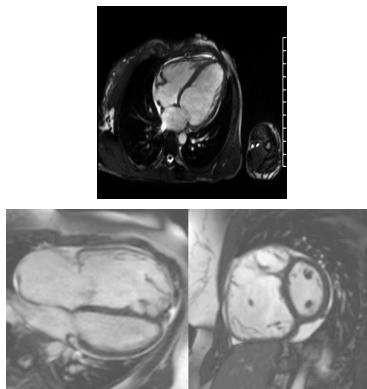
Fractional Area Change


Two-dimensional Fractional Area Change is one of the recommended methods of quantitatively estimating RV function, with a lower reference value for normal RV systolic function of 35%.

Rudski. J Am Soc Echocardiogr 2010;23:685-713

ECHO: NO Accurate Method to Quantify RV Volumes and Function

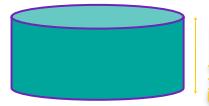
Two dimensionally derived estimation of RV EF is not recommended, because of the heterogeneity of methods and the numerous geometric assumptions.


In studies in selected patients with RV dilatation or dysfunction, 3D echocardiography using the disk summation method may be used to report RV EFs. A lower reference limit of 44% has been obtained from pooled data. Until more studies are published, it may be reasonable to reserve 3D methods for serial volume and EF determinations.

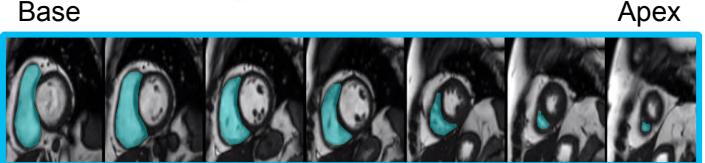
Rudski. J Am Soc Echocardiogr 2010;23:685-713

CMR Imaging for the Right Heart

HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER



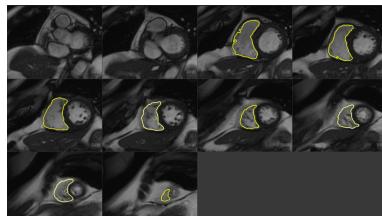
Advantages:


- Large FOV
 - Intra/extracardiac anatomy
- Unlimited imaging planes for the RV
- Superior image resolution
- Tissue characterization
 - Fibrosis, inflammation, scar, fat, thrombus
- Volumetric based technique: RV volumes, RVEF and Regurg Vol/RF

Chambers Quantification

HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

Volume = Area x Thickness


40 ml + 32 ml + 27 ml + 25 ml + 20 ml + 10 ml + 5 ml

RV EDV = 159 ml

CMR is Superior to ECHO for Right Ventricular Measurements

HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

- Highly accurate
- Highly reproducible
- Low variability
 - intra-observer
 - inter-observer
- Low inter-study (5-6%)

Accurate RV volumes & EF can aid in:

- Initial clinical assessment of the impact of PI/TR
- Long term with serial measurements

Boxt LM. J Thorac Imaging. 1993;8:92-7.
Doherty NJ. J Am Coll Cardiol. 1992;20:1223-8.
Katz J. J Am Coll Cardiol. 1993;21:1475-91.
Pattynama PM. Magn Reson Imaging. 1995;13:53-63.
Rominger MB. J Magn Reson Imaging. 1999;10:908-18.

Reference RV Values Normalized to Age, Gender and Body Surface Area

HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

Table 8 RV summary data for all ages (mean \pm SD, 95% confidence interval)

	All	Males	Females
EDV (mL)	144 \pm 23 (98, 190)	163 \pm 25 (113, 213)	126 \pm 21 (84, 168)
EDV/BSA (mL/m ²)	78 \pm 11 (57, 99)	83 \pm 12 (60, 106)	73 \pm 9 (55, 92)
ESV (mL)	50 \pm 14 (22, 78)	57 \pm 15 (27, 86)	43 \pm 13 (17, 69)
ESV/BSA (mL/m ²)	27 \pm 7 (13, 41)	29 \pm 7 (14, 43)	25 \pm 7 (12, 38)
SV (mL)	94 \pm 15 (64, 124)	106 \pm 17 (72, 140)	83 \pm 13 (57, 108)
SV/BSA (mL/m ²)	51 \pm 7 (37, 65)	54 \pm 8 (38, 70)	48 \pm 6 (36, 60)
EF (%)	66 \pm 6 (54, 78)	66 \pm 6 (53, 78)	66 \pm 6 (54, 78)
EF/BSA (%/m ²)	36 \pm 5 (27, 45)	34 \pm 4 (26, 41)	39 \pm 5 (29, 49)
Mass (g)	48 \pm 13 (23, 73)	66 \pm 14 (38, 94)	48 \pm 11 (27, 69)
Mass/BSA (g/m ²)	31 \pm 6 (19, 43)	34 \pm 7 (20, 47)	28 \pm 5 (18, 38)

Maceira. European Heart Journal (2006) 27, 2879-2888

Reference RV Values Normalized to Age, Gender and Body Surface Area

HOUSTON
Methodist
DEBAKEY HEART &
VASCULAR CENTER

Table 2 Males: RV volumes, systolic function and mass (absolute and normalized to BSA) by age decile (mean, 95% confidence interval)

Age (years)	20-29	30-39	40-49	50-59	60-69	70-79
Absolute values						
EDV (mL) SD 25.4	177 (127, 227)	171 (121, 221)	166 (116, 216)	160 (111, 210)	155 (105, 205)	150 (100, 200)
ESV (mL) SD 15.2	68 (38, 98)	64 (34, 94)	59 (29, 89)	55 (25, 85)	50 (20, 80)	46 (16, 76)
SV (mL) SD 17.4	108 (74, 143)	108 (74, 142)	107 (73, 141)	106 (72, 140)	105 (71, 139)	104 (70, 138)
EF (%) SD 6.5	61 (48, 74)	63 (50, 76)	65 (52, 77)	66 (53, 79)	68 (55, 81)	70 (57, 83)
Mass (g) SD 14.4	70 (42, 99)	69 (40, 97)	67 (39, 95)	65 (37, 94)	63 (35, 92)	62 (33, 90)
Normalized to BSA						
EDV/BSA (mL/m ²) SD 11.7	91 (68, 114)	88 (65, 111)	85 (62, 108)	82 (59, 105)	79 (56, 101)	75 (52, 98)
ESV/BSA (mL/m ²) SD 7.4	39 (21, 30)	33 (18, 47)	30 (16, 45)	28 (13, 42)	23 (11, 40)	23 (6, 37)
SV/BSA (mL/m ²) SD 8.2	56 (40, 72)	55 (39, 71)	55 (39, 71)	54 (38, 70)	53 (37, 69)	52 (36, 69)
EF/BSA (%/m ²) SD 4	32 (24, 40)	32 (25, 40)	33 (25, 41)	34 (26, 42)	35 (27, 42)	35 (27, 43)
Mass/BSA (g/m ²) SD 6.8	36 (23, 50)	35 (22, 49)	34 (21, 48)	33 (20, 46)	32 (19, 45)	31 (18, 44)

Table 3 Females: RV volumes, systolic function and mass (absolute and normalized to BSA) by age decile (mean, 95% confidence interval)

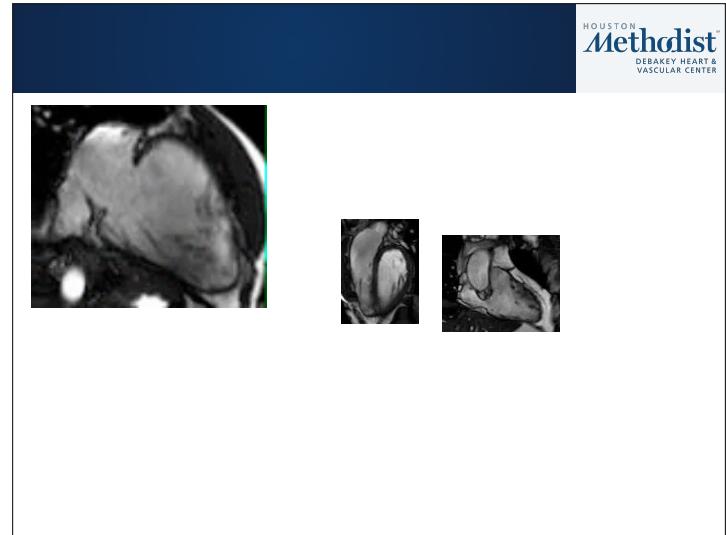
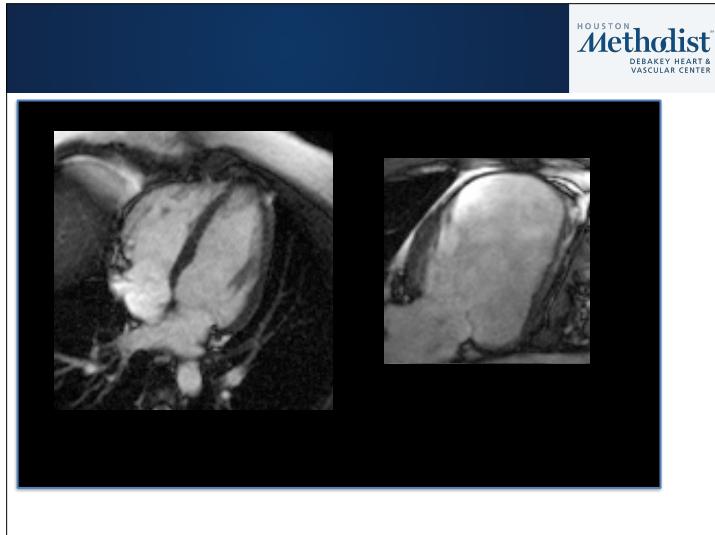
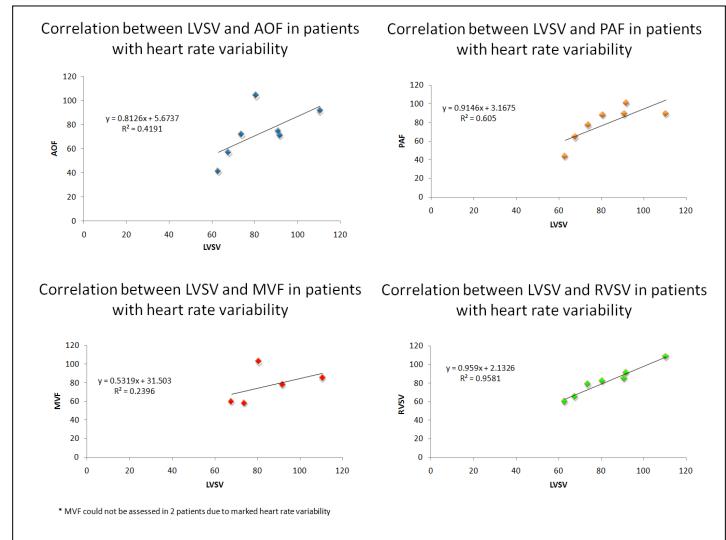
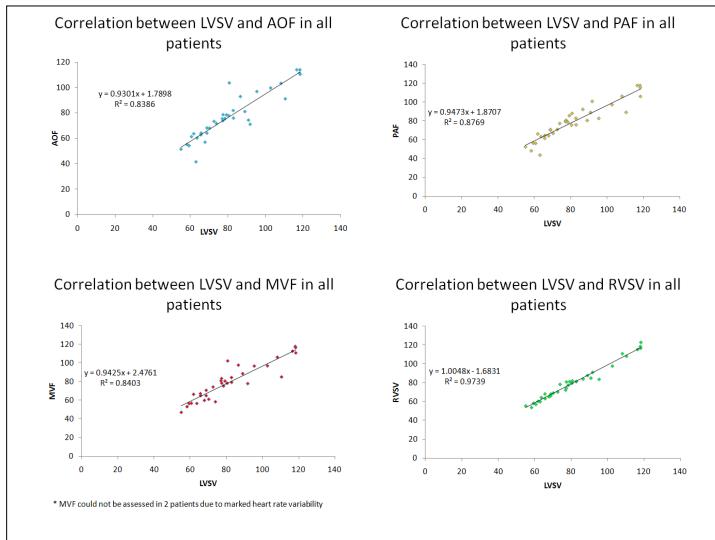
Age (years)	20-29	30-39	40-49	50-59	60-69	70-79
Absolute values						
EDV (mL) SD 21.6	142 (100, 184)	136 (94, 178)	130 (87, 172)	124 (81, 166)	117 (75, 160)	111 (69, 153)
ESV (mL) SD 13.3	55 (29, 82)	51 (25, 77)	46 (20, 72)	42 (15, 68)	37 (11, 63)	32 (6, 58)
SV (mL) SD 13.1	87 (61, 112)	85 (59, 111)	84 (58, 109)	82 (56, 108)	80 (55, 106)	79 (53, 105)
EF (%) SD 6.5	61 (49, 73)	63 (51, 75)	65 (53, 77)	67 (55, 79)	69 (57, 81)	71 (59, 83)
Mass (g) SD 10.6	54 (33, 74)	51 (31, 72)	49 (28, 70)	47 (26, 68)	45 (24, 66)	43 (22, 63)
Normalized to BSA						
EDV/BSA (mL/m ²) SD 9.4	84 (65, 102)	80 (61, 98)	76 (57, 94)	72 (53, 90)	68 (49, 86)	64 (45, 82)
ESV/BSA (mL/m ²) SD 6.0	32 (20, 45)	30 (17, 45)	27 (14, 40)	24 (11, 37)	21 (8, 34)	19 (6, 32)
SV/BSA (mL/m ²) SD 6.1	51 (39, 63)	50 (38, 62)	49 (37, 61)	48 (36, 60)	46 (34, 58)	45 (33, 57)
EF/BSA (%/m ²) SD 5.2	37 (27, 47)	38 (27, 48)	38 (28, 49)	39 (29, 49)	40 (30, 50)	41 (31, 51)
Mass/BSA (g/m ²) SD 5.2	32 (22, 42)	30 (20, 40)	29 (19, 39)	27 (17, 37)	26 (16, 36)	24 (14, 35)

Table 3 Females: RV volumes, systolic function and mass (absolute and normalized to BSA) by age decile (mean, 95% confidence interval)

Age (years)	20-29	30-39	40-49	50-59	60-69	70-79
Absolute values						
EDV (mL) SD 21.6	142 (100, 184)	136 (94, 178)	130 (87, 172)	124 (81, 166)	117 (75, 160)	111 (69, 153)
ESV (mL) SD 13.3	55 (29, 82)	51 (25, 77)	46 (20, 72)	42 (15, 68)	37 (11, 63)	32 (6, 58)
SV (mL) SD 13.1	87 (61, 112)	85 (59, 111)	84 (58, 109)	82 (56, 108)	80 (55, 106)	79 (53, 105)
EF (%) SD 6.5	61 (49, 73)	63 (51, 75)	65 (53, 77)	67 (55, 79)	69 (57, 81)	71 (59, 83)
Mass (g) SD 10.6	54 (33, 74)	51 (31, 72)	49 (28, 70)	47 (26, 68)	45 (24, 66)	43 (22, 63)
Normalized to BSA						
EDV/BSA (mL/m ²) SD 9.4	84 (65, 102)	80 (61, 98)	76 (57, 94)	72 (53, 90)	68 (49, 86)	64 (45, 82)
ESV/BSA (mL/m ²) SD 6.0	32 (20, 45)	30 (17, 45)	27 (14, 40)	24 (11, 37)	21 (8, 34)	19 (6, 32)
SV/BSA (mL/m ²) SD 6.1	51 (39, 63)	50 (38, 62)	49 (37, 61)	48 (36, 60)	46 (34, 58)	45 (33, 57)
EF/BSA (%/m ²) SD 5.2	37 (27, 47)	38 (27, 48)	38 (28, 49)	39 (29, 49)	40 (30, 50)	41 (31, 51)
Mass/BSA (g/m ²) SD 5.2	32 (22, 42)	30 (20, 40)	29 (19, 39)	27 (17, 37)	26 (16, 36)	24 (14, 35)

Table 3 Females: RV volumes, systolic function and mass (absolute and normalized to BSA) by age decile (mean, 95% confidence interval)

Age (years)	20-29	30-39	40-49	50-59	60-69	70-79
Absolute values						
EDV (mL) SD 21.6	142 (100, 184)	136 (94, 178)	130 (87, 172)	124 (81, 166)	117 (75, 160)	111 (69, 153)
ESV (mL) SD 13.3	55 (29, 82)	51 (25, 77)	46 (20, 72)	42 (15, 68)	37 (11, 63)	32 (6, 58)
SV (mL) SD 13.1	87 (61, 112)	85 (59, 111)	84 (58, 109)	82 (56, 108)	80 (55, 106)	79 (53, 105)
EF (%) SD 6.5	61 (49, 73)	63 (51, 75)	65 (53, 77)	67 (55, 79)	69 (57, 81)	71 (59, 83)
Mass (g) SD 10.6	54 (33, 74)	51 (31, 72)	49 (28, 70)	47 (26, 68)	45 (24, 66)	43 (22, 63)
Normalized to BSA						
EDV/BSA (mL/m ²) SD 9.4	84 (65, 102)	80 (61, 98)	76 (57, 94)	72 (53, 90)	68 (49, 86)	64 (45, 82)
ESV/BSA (mL/m ²) SD 6.0	32 (20, 45)	30 (17, 45)	27 (14, 40)	24 (11, 37)	21 (8, 34)	19 (6, 32)
SV/BSA (mL/m ²) SD 6.1	51 (39, 63)	50 (38, 62)	49 (37, 61)	48 (36, 60)	46 (34, 58)	45 (33, 57)
EF/BSA (%/m ²) SD 5.2	37 (27, 47)	38 (27, 48)	38 (28, 49)	39 (29, 49)	40 (30, 50)	41 (31, 51)
Mass/BSA (g/m ²) SD 5.2	32 (22, 42)	30 (20, 40)	29 (19, 39)	27 (17, 37)	26 (16, 36)	24 (14, 35)





Table 3 Females: RV volumes, systolic function and mass (absolute and normalized to BSA) by age decile (mean, 95% confidence interval)

Age (years)	20-29	30-39	40-49	50-59	60-69	70-79
Absolute values						
EDV (mL) SD 21.6	142 (100, 184)	136 (94, 178)	130 (87, 172)	124 (81, 166)	117 (75, 160)	111 (69, 153)
ESV (mL) SD 13.3	55 (29, 82)	51 (25, 77)	46 (20, 72)	42 (15, 68)	37 (11, 63)	32 (6, 58)
SV (mL) SD 13.1	87 (61, 112)	85 (59, 111)	84 (58, 109)	82 (56, 108)	80 (55, 106)	79 (53, 105)
EF (%) SD 6.5	61 (49, 73)	63 (51, 75)	65 (53, 77)	67 (55, 79)	69 (57, 81)	71 (59, 83)
Mass (g) SD 10.6	54 (33, 74)	51 (31, 72)	49 (28, 70)	47 (26, 68)	45 (24, 66)	43 (22, 63)
Normalized to BSA						
EDV/BSA (mL/m ²) SD 9.4	84 (65, 102)	80 (61, 98)	76 (57, 94)	72 (53, 90)	68 (49, 86)	64 (45, 82)
ESV/BSA (mL/m ²) SD 6.0	32 (20, 45)	30 (17, 45)	27 (14, 40)	24 (11, 37)	21 (8, 34)	19 (6, 32)
SV/BSA (mL/m ²) SD 6.1	51 (39, 63)	50 (38, 62)	49 (37, 61)	48 (36, 60)	46 (34, 58)	45 (33, 57)
EF/BSA (%/m ²) SD 5.2	37 (27, 47)	38 (27, 48)	38 (28, 49)	39 (29, 49)	40 (30, 50)	41 (31, 51)
Mass/BSA (g/m ²) SD 5.2	32 (22, 42)	30 (20, 40)	29 (19, 39)	27 (17, 37)	26 (16, 36)	24 (14, 35)

Table 3 Females: RV volumes, systolic function and mass (absolute and normalized to BSA) by age decile (mean, 95% confidence interval)

Age (years)	20-29	30-39	40-49	50-59	60-69	70-79

<tbl_r cells="7" ix="1"

