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Action potential is a binary and rapid Thinking is decoded by brain-machine
communication system with high fidelity ~ interface



Experiments in Squid Axons (non-myelinated) Revealed Inward
Sodium Current of Action Potential

» diameter = 1,000uM

» allowed a manually made silver
electrode to be inserted into axon

 -60mV inside of axon

« overshot after depolarization reaches
a threshold — action potential

» overshot disappeared after sodium
ions were removed from the
extracellular medium, suggesting the
overshot was caused by sodium ion
influx.
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Inward or Outward Current was Isolated
by Voltage-Clamp Technique

The overshot was brought back to the
resting level by outward potassium ion
current — repolarization.

HH produced a mathematical equation

It produced a trace that matched the
actual recording of action potential.

Nobel Prize in 1963
Squid axon model — simple structure

with no myelin, and large diameter,
which made experiments feasible



How about myelinated nerve fibers?

Myelination of
a peripheral axon

124 non-myelinated nerve

fibers were segmented, while
myelinated nerve fibers were
also captured and segmented
Segmentation Quantification

Prediction

Myelin
U

Measurement

in Excel, same

as for manual
method

Moiseev et al JIPNS 2018
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Myelin enables saltatory conduction, not continuous conduction,
thereby increases the velocity of action potential propagation

Hugh Bostock’s teased nerve fiber
preparation

Myelinated internode enables saltatory
conduction of action potentials that is
energy-efficient and faster.

Inward current at the node of Ranvier is
usually five times higher than the minimum
of current required to depolarize the node
of Ranvier. This surplus is called Safety
Factor.

This surplus of depolarization current is preserved by the excellent seal of
internodal myelin, which ensures abundant current available for the
depolarization at next node of Ranvier.



When the shunting (increase of capacitance) becomes severe, conduction

block may occur.

The large outward current diminishes
the safety factor by shunting out the
depolarizing current.

Because action potential propagates
continuously in demyelinated internode,
not in saltatory fashion, it moves slowly
with high energy cost. When the
situation is severe, action potential may
completely stop propagating, called
conduction block.

 Conduction block results in disabilities (acute

symptoms).



Compound Nerve Action Potential

Fic. 1. Spikes of A, B and C fibers; A,
potential from a single large fiber of a dorsal
spinal root of the cat; B, from the cervical
sympathetic nerve of the rabbit, threshold
response, possibly not a single fiber (spike
25 uv.); C, from the splenic nerve of the cat,
threshold response (spike 20 uv.). The fine
oscillations are occasioned by the noise level.

Fi1G. 2. Action potentials of A, B and C
fibers (cat): A, from the phrenic nerve; B and
C from hypogastric nerves.

Gasser and Erlanger Nobel Lecture in 1947
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Compound nerve action potential recorded from a nerve bundle is equal to the
summation of all action potentials from individual nerve fibers.



Mormal nerve

Responses arrive of
recording electrods
alrmost togsther

Termporal dispersion

Eﬁfp onses arrive af
arant firmes
F’Lmse cuﬂcelfc:ﬂmn — _M_

CV is measured based on the onset of CNAP, which is mainly 9
contributed by the largest myelinated nerve fibers. Weir et al INNP 2005




Conduction Block
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Compound Nerve Action Potential

Fic. 1. Spikes of A, B and C fibers; A,
potential from a single large fiber of a dorsal
spinal root of the cat; B, from the cervical
sympathetic nerve of the rabbit, threshold
response, possibly not a single fiber (spike
25 uv.); C, from the splenic nerve of the cat,
threshold response (spike 20 uv.). The fine
oscillations are occasioned by the noise level.

Fi1G. 2. Action potentials of A, B and C
fibers (cat): A, from the phrenic nerve; B and
C from hypogastric nerves.

Gasser and Erlanger Nobel Lecture in 1947
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CV is measured based on the onset of CNAP, which is mainly
contributed by the largest myelinated nerve fibers.



Electrophysiological signatures of segmental demyelination

Slowed conduction velocity

Temporal Dispersion

Conduction block
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Demyvelinating Diseases:

PREMARY
Guillain Barre syndrome; Chronic inflammatory demyelinating polyneuropathy; Multifocal motor

neuropathy; a sub-group of inherited neuropathies

SECONDARY Overlay | B
-Diabetic neuropathy \
*Neuropathies after certain infections

Dysmyelinating Diseases:
*Charcot-Marie-Tooth type-1A

- uniform slowing of conduction velocity

- non-uniform slowing of CV in subtypes

of CMTs, such as CMTX1, CMT4J, HSN1C

These inherited neuropathies now provide
many new insights into mechanisms
of nerve conduction.

Zhang et al, Brain 2008
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Inherited Neuropathy and genetic-
manipulated animal models
provide additional insights

L @ B Schwann Cell
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« Early simulation studies showed
a variety of nerve metrics affecting
nerve conduction.
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Slowed conduction velocity # always segmental demyelination
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Concept of Functional Demyelination

- signatures of segmental demyelination have been observed
In the absence of segmental demyelination using a HNPP
mouse model
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PMP22 PROTE IN (Heterozygous deletion of PMP22 gene

causes hereditary neuropathy with liability to pressure palsies)

@ HnPP
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Electrophysiological features of demyelination are also observed in HNPP mouse nerve
conduction studies. One of the two Pmp22 copies was deleted from the mouse genome —

heterozygous knockout mouse.
Hu et al, PLOS Genetics 2016



D ol
-

A1

A3|

2. 7mA

A2 g/ . R . ) o ETA
| o _

[\ : . : 4.3mAl

B[\ AL i

Pmp22+/+

‘ ——— —_— 2:7mA
+ B X . . =t

A1

A3

A4

A4 4 [ : B e . . A3MA

v 1mV -

Pmp22+/-
A + . Y . . e 1.2;;‘/ A

AS

ii

- Pmp22+/-
| | | 27rnA]
+ - 1n;\)7:
: : i
+-. o — s8N
" ,.+,".., - i — 1m
2 + g e = , — m
| Pmp22+/-

Morphometric analysis & teased nerve fiber: no axonal loss or segmenal

demyelination

Hu et al, PLOS Genetics 2016



MUPP1 ERM

70-1  MAG
T 702  P-Catenin
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Adherens junctions
Septate junctions Poliak et al J Neurosci 2002



Perinuclear
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Quantification of Abnormal
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256 yes 65:10%

832 no 12%4%

Guo et al Annals of Neurology 2014



ABNORMAL MYELIN PERMEABILITY
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Functional Demyelination
A

Voltage-gated
Pmp22+/+ sodium channel . °
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Pmp22+/- )

s Tight Junction proteins, such as Claudin19.
«== Transmembrane adhesion proteins, such as JAM-C, MAG.
wmms Adhesion protein, such as E-cadherin.
@ Septate junction proteins, such as Caspr, Neurofascin.
Compact myelin protein, such as PMP22.

This mechanism denotes pathological
processes that alter myelin permeability
without physically stripping off the myelin
sheath.

Functional demyelination was detectable at
one-week old HNPP mice, but actual
segmental demyelination (strip myelin off
axon) did not occur until 10 months of age
in HNPP mouse model

Upstream mechanism matters.

Guo et al Annals of Neurology 2014



MUPP1 ERM
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disruption of myelin junction
20-2 MAG be shar_ed b_y many types of
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Summary-1: Action potential propagation functions as a binary informatic
system with high fidelity. Disruption of this signal transduction results in
disabilities in a variety of demyelinating diseases. Emerging monogenic
inherited neuropathies enable us to appreciate specific molecules in regulating
nerve conduction.

Hyperactive PAK1 disrupts myelin junctions that appear to be an upstream
mechanism before the internodal myelin is removed in demyelination.

This mechanism may operate not only in HNPP but also in other types of
demyelinating diseases.

Summary-11: We have identified a model of dysmyelination via a different
PAK signaling. This finding will allow us to design PAK activators or inhibitors
to regulate or repair dysmyelination in neurological diseases.
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