Interdisciplinary Mock Codes and Hi-fidelity Simulation: Improving Recognition, Rates Shedrick Kennedy MSN, RN, CCRN-K

Center For Nursing Research Education & Practice

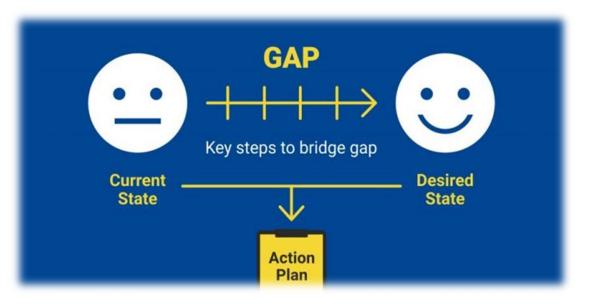
Learning Objectives

- Participants will:
 - Implement interdisplicinary mock code training to enhance team performance and improve patient safety.

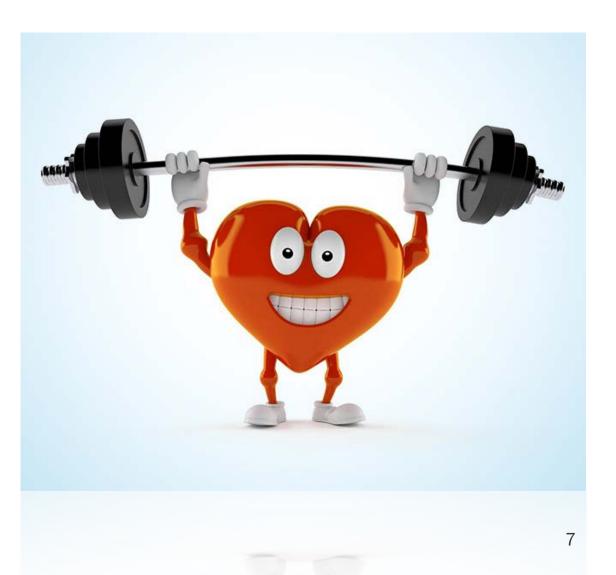
- In-hospital cardiac arrests (IHCA)-loss of circulation prompting resuscitation with chest compressions, defibrillation, or both
- IHCAs occur in over 290 000 adults each year in the United States
- Survival rate of approximately 10.0% to 23.9%
- Highest survival rates
 - Witness arrest
 - Initial rhythms pulseless ventricular tachycardia and ventricular fibrillation
 - Quality compression and prompt defibrillation

Background

- CODE BLUE events-
 - SCARY and ANXIETY PROVOKING!!!
 - Episodic
- Despite training efforts
 - Skills and knowledge retention decline following BLS/ACLS certification
 - 14% of nurses retained advanced cardiovascular life support skills one year after certification
 - Industry leaders agreed that 2-year training cycles are not optimal



Assessment


• MOCK CODES ARE NEEDED!

- Gap analysis
 - CPR and Code blue validation during orientation
 - BLS and ACLS certification/recertification
 - Annual Competency (code blue management)
 - Remediation
 - Mock Codes
 - Standardization?
 - Information sharing and best practice dissemination?
 - Collaborative?

- American Heart Association (AHA), National Academy of Medicine, and The Joint Commission
 - hospitals provide additional, ongoing resuscitation training, such as in situ IHCA simulations.

Get With The Guidelines®-Resuscitation for In-Hospital Cardiac Arrests (GWTG)

SISTERIA D	Conterns tals available at ScienceOnect	1 Ristory (1)
网络	Resuscitation	
ELSEVICE:	journal homopage: www.eleavier.com/locate/resuscitation	

Simulation and education

Comparison of sudden cardiac arrest resuscitation performance data obtained from in-hospital incident chart review and in situ high-fidelity medical simulation *. **

Mary R. Cooper¹, Peggy B. Martin¹, Dominick Tan

BMC Emergency Medicine reserve ancie Hands-on time 4

Leo Kobayashi^{k,N,}, David G. Lindquist^{4,N}, Ilse M. J Elizabeth M. Suttor^{4,N}, Jessica L. Smith^{4,N}, Robert Improving Code Team Performance and Jennifer Dunbar-Viveriro^{4,N}, Mark S. Jones^{1,N}, Scolert Improving Code Team Performance and Survival Outcomes: Implementation of Pediatric **Resuscitation Team Training***

Lynda J. Knight, RN, MSN1; Julia M. Gabhart, MD23; Karla S. Earnest, MS, MSN4; Kit M. Leong, RHIT, CPHQ5; Andrew Anglemyer, PhD5; Deborah Franzon, MD7

CARDIOPULMONARY ARREST

ADULT age >=18 years

Confirmation of airway device placement in trachea: Percent of events who had confirmation of airway device placement in trachea.

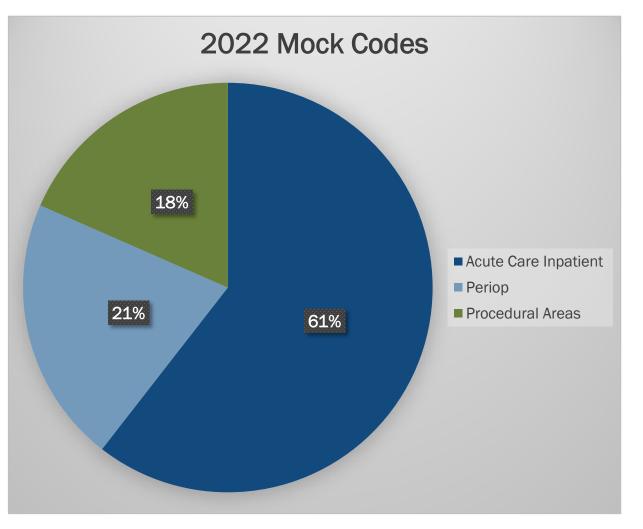
Time to first shock <= 2 min for VF/pulseless VT first documented rhythm: Percent of events with VF/pulseless VT first documented rhythm in whom time to first shock <=2 minutes of event recognition.

Time to IV/IO epinephrine ≤ 5 minutes for asystole or Pulseless Electrical Activity (PEA): Percent of events where time to epinephrine ≤ 5 minute of asystole or pulseless electrical activity.

Percent pulseless cardiac events monitored or witnessed: Percent of pulseless cardiac patient events were monitored or witnessed

In Situ Training Simulation

- Realistic training environment (patients' rooms, waiting rooms, procedural areas, and showers)
- In Situ Training benefits
 - identify issues with the existing code processes,
 - realistic and interactive training environment



- Vision: Strive to improve patient safety, clinician efficiency, and competency in managing CERT and cardiac arrest events.
- Mission- To improve patient outcomes through resuscitative training. By utilizing in-situ simulation, healthcare team members practice skills, improve knowledge, and build self-confidence in a safe and controlled environment.
- 2023 Mock Code Goal:
 - HMH Professional Development Leaders (PDLs) & Professional Practice Leaders (PPLs) or Designees to conduct 15 mock codes per quarter
 - PPLS or Designees conduct subsequent

Mock Code Outcomes

Annual Mock Code Drills & Overall Performance

2021 vs 2022

60

50

40

30

20

10

0

100%

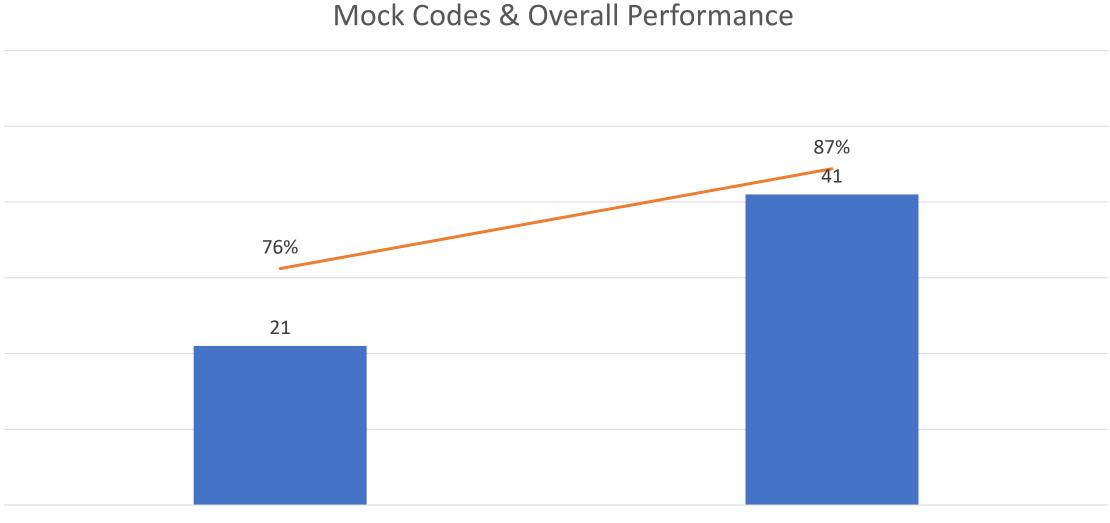
95%

90%

85%

80%

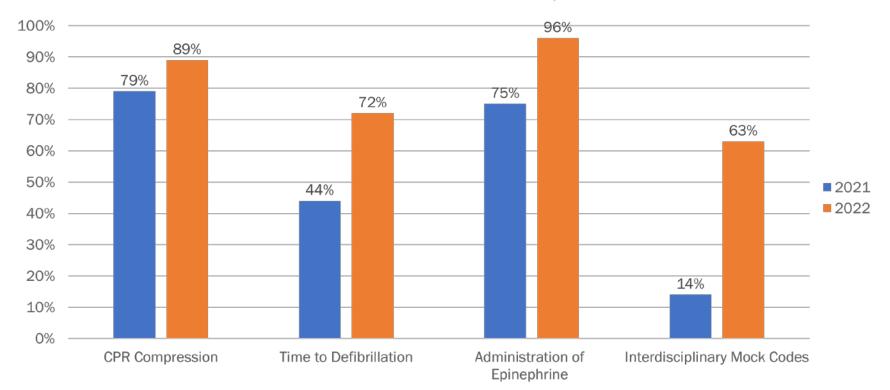
75%


70%

65%

60%

55%


50%

Future-State

Breakdown of Performance Compliance

 By September 2022, 53% of mock codes had respiratory therapy and APRN participation, and physician involvement increased from 0% to 24%

Highlight -Unit Performance

Unit X Mock Code Overall Performance

• CERT-IN-A-BOX

Interprofessional Collaboration

- Code Blue Subcommittee Reporting
- Interprofessional Education
 - SIM-Based Training
- Residency Boot camps
- APRN Annual Competencies

5 STEPS TO IMPLEMENTING A MOCK CODE PROGRAM

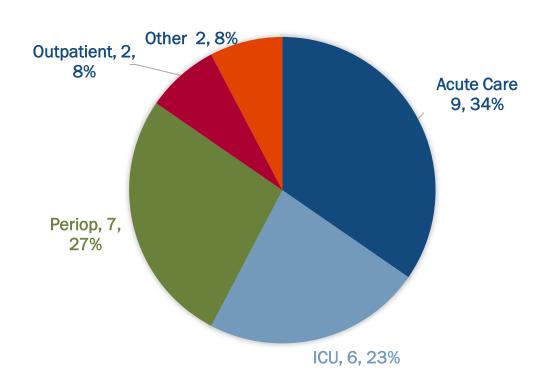
- 1. Recognize the need for mock Code Blues
- 2. Choose a lead to run your program
- 3. Make a plan that sets mock codes up for success
 - Utilize Tech and communications
 - Virtual evaluators and google sheets
- 4. Collect data on every mock code
 - Excel spreadsheets for mock Code Blues
- 5. Debrief after each event

Evaluation of Metrics

- Focus on:
 - CPR Quality
 - Defibrillation time
 - Ventilation
 - Team dynamics & leadership
 - Communication
 - Documentation

Things to consider

- High fidelity vs. low-to-moderate
 - Equipment
- Buy-in
 - Seeing the vision and value
 - Fidelity


Barriers and facilitators

Mock Code Performance

- 26 house-wide mock codes
- Average 88% compliance rate.

MOCK CODE LOCATION

Next Steps

25% increase in mock code frequency

Utilize participant questionnaire to evaluate the simulation experience

Mock CERT (RRTs)

RQI

Questions?

- American Heart Association (2023) <u>https://www.heart.org/en/professional/quality-improvement/get-with-the-guidelines/get-with-the-guidelines-resuscitation</u>
- Andersen, L. W., Holmberg, M. J., Berg, K. M., Donnino, M. W., & Granfeldt, A. (2019). In-Hospital Cardiac Arrest: A Review. JAMA, 321(12), 1200–1210. https://doi.org/10.1001/jama.2019.1696
- Bircher, N.G., Chan, P.S., Xu, Y.; American Heart Association's Get With The Guidelines– Resuscitation Investigators. Delays in Cardiopulmonary Resuscitation, Defibrillation, and Epinephrine Administration All Decrease Survival in In-hospital Cardiac Arrest. Anesthesiology. 2019;130(3):414- 422. doi:10.1097/ALN.000000000002563
- Hammontree, J., Kinderknecht, C.G. (2022). An In Situ Mock Code Program in the Pediatric Intensive Care Unit: A Multimodal Nurse-Led Quality Improvement Initiative. Critical Care Nurse. 42(2):42-55. doi:10.4037/ccn2022631