Imaging Patients with Hypertrophic Cardiomyopathy

Sherif F. Nagueh, MD, FACC, FASE, FAHA

Methodist DeBakey Heart and Vascular Center The Methodist Hospital Houston, Texas

Morphology

Hypertrophy Patterns in HCM

Apical HCM Visualized by CMR

Asymmetric Hypertrophy by Cardiac CT

Asymmetric Hypertrophy by Cardiac CT

Apical Hypertrophy by Cardiac CT

Systolic Function

LV EF and Survival in HCM

Biagini et al. J Am Coll Cardiol 2005;46:1543

Global Longitudinal Strain in HCM

Strain Polar Map in HCM

Diastolic Function

Pulmonary Venous Flow with Increased LV EDP in HCM

HCM with Restrictive LV Filling

Algorithm for LAP Estimation in HCM

Dynamic Obstruction

LVOT Obstruction

HYPERTROPHIC CARDIOMYOPATHY MECHANISM OF SAM

- 1. Anterior displacement of papillary muscles
- 2. Mitral leaflet elongation (relative to LV size)
- 3. Reduced posterior leaflet mobility
- 4. Curvature of septum
- 5. Hyperdynamic LV contraction

Degree of SAM does not relate with severity of hypertrophy

HYPERTROPHIC CARDIOMYOPATHY DYNAMIC LVOT OBSTRUCTION

Color Doppler Showing Dynamic Obstruction in HCM

HYPERTROPHIC CARDIOMYOPATHY DYNAMIC LVOT OBSTRUCTION

Dynamic Obstruction by 3 D in HCM

PROVOCABLE LVOT OBSTRUCTION

Exercise

- Amyl nitrite
- Valsalva
- Squat to stand
- Isoproternol/dobutaminePVC

Post PVC Gradient

Algorithm for Provoking Dynamic Obstruction in HCM Patients

Mid-Ventricular Obstruction and Apical Aneurysm

MVO and Apical Aneurysms :Key Points

- Noticed in 3% of patients in recent registry
- Mid cavity obliteration with gradient ≥30 mmHg
- Echo Doppler with UEA and CMR helpful in diagnosis
- Portends higher risk for mortality and ventricular arrhythmias

Echocardiography for MVO and Apical Aneurysm

CMR for MVO and Apical Aneurysm

Imaging Role in Risk Stratification for SCD in HCM

Imaging Markers of Higher SCD Risk

- Maximum wall thickness ≥30 mm (consider ≥ 28 mm)
- Apical aneurysm (event rate at 5-15%/ year)
- LGE >15% of LV mass
- LA AP diameter in HCM Risk-SCD calculator
- LVOT obstruction (rest or Valsalva) in HCM-Risk-SCD calculator
- LV EF <50%
- Ischemia + blood flow reserve and stress myocardial blood flow heterogeneity by PET

LGE in HCM and Outcomes

Apical HCM with Apical Infarction

Treatment of Dynamic Obstruction

Medical Therapy for HCM

Interval imaging with echo at 1-2 years interval, or earlier with symptomatic changes

Objective of imaging: LVOT gradient, changes in ventricular size and function

Detect changes in LV EF to identify dilated-hypokinetic LV to institute GDMT

On myosin inhibitors main goals are LVOT gradients and quantitative LV EF to avoid heart failure due to reduced LV EF

Mechanism of Action of Mavacamten

Ho et al. Circulation Heart Failure. 2020;13:e006853

Response in Explorer-I

End point: decrease in NYHA class by at least one level +1.5 ml/kg/min increase in MVO₂ or 3 ml/kg/min increase in MVO₂ without worsening of NYHA class

Patients on mavacamten had

a-greater reductions than placebo in post-exercise LVOT gradient (-36 mm Hg, p < 0.0001)

b-greater increase in pVO_2 (+1.4 mL/kg per min, p=0.0006)

c-improved symptom scores (p<0.001)

d-34% more patients improved by at least one class

e-Safety and tolerability similar to placebo

Response in Explorer-II

End point met in 37% of drug arm (n=123) vs 17% on placebo (n=128) at 30 weeks

NYHA class unchanged in 35% on the drug

>26% of patients on the drug left with LVOT gradient >50 mmHg with exercise

>43% patients on the drug left with LVOT gradient >30 mmHg

Mavacamten Decreases LA Volume, LV Mass, and LV EF

Saberi et al. Circulation 2021;143: 606-608

Mavacamten Initiation Phase

Mavacamten Maintenance Phase

Acute Changes in Septal Thickness After Myectomy

Pre - Myectomy

Post - Myectomy

Nagueh et al JASE 2011;24:473 - 498

Screening for VSD after Myectomy

NONSURGICAL SEPTAL REDUCTION THERAPY (NSRT)-Alcohol Septal Ablation (ASA)

Confirmation Step With Contrast Injection and Echocardiography

Contrast (Albunex ,Optison, or Levovist) is injected through the balloon lumen into the septum.

Septal Opacification by MCE in Relation to Dynamic Obstruction

Nagueh and Mahmarian J Am Coll Cardiol 2006;48:2410

TEER for Dynamic Obstruction

TEER for Dynamic Obstruction

LVOT Gradient Pre and Post TEER

Conclusions

Imaging is essential for evaluation of patients with known or suspected HCM in conjunction with clinical findings

Imaging plays critical role in informing risk stratification for SCD and evaluation of patients with chest pain and possible CAD

Guide treatment with negative inotropic drugs, SRT, TEER

Staff should have clear understanding of strengths and limitations of different imaging modalities and clinical implications of findings ascertained by imaging. Results should be communicated clearly with clinical team taking care of the patient.