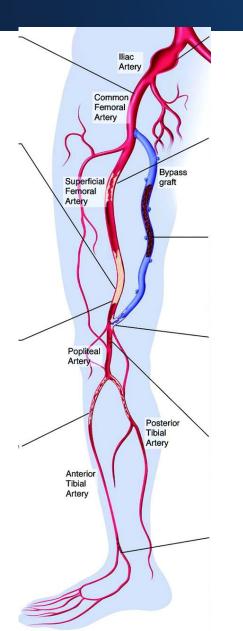
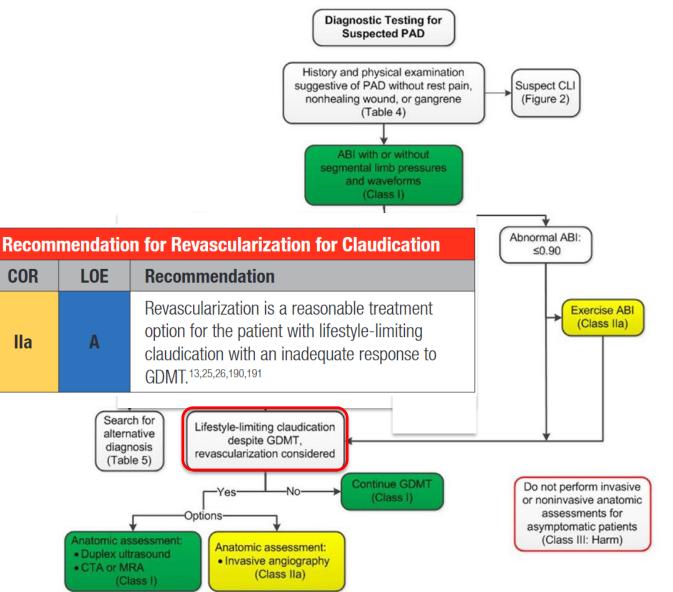
Peripheral Vascular Disease: Should it be CT or MRI Imaging?

Faisal Nabi, MD FACC


October 22, 2023

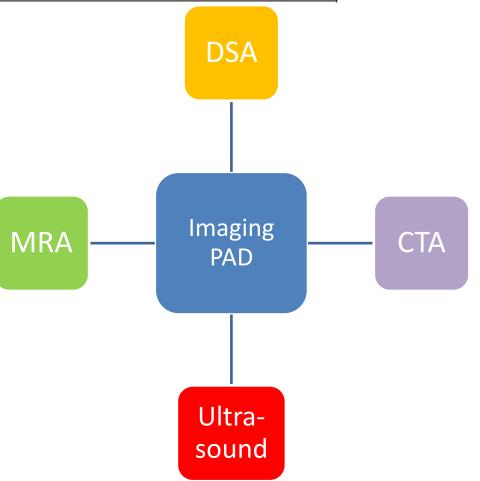
Peripheral Arterial Disease

- Affects over 8 million Americans
- Important marker for elevated risk of
 - CAD/MI
 - CVA
 - Death
- Symptomatic PAD adds to this burden by affecting quality of life and limiting functional capacity
 - Claudication
 - Acute/Critical limb ischemia


Clinical Diagnosis of PAD

COR	LOE	Recommendations			
I	B-NR	In patients with history or physical examination findings suggestive of PAD (Table 4), the resting ABI, with or without segmental pressures and waveforms, is recommended to establish the diagnosis.			
	Doppl	oogmontal procouroo			
Brachial artery Ant tibi. arte	erior	 ABI < 0.9; sensitivity 79%, specificity 96% for PAD (stenosis >50%) 			
Doppler	Postetibial	 – Location inferred >20mmHg decrease in segmental LE pressures 			

Diagnostic Testing for Suspected PAD



Purpose of Imaging in Symptomatic PAD

B-NR Duplex ultrasound, CTA, or MRA of the lower extremities is useful to diagnose anatomic location and severity of stenosis for patients with symptomatic PAD in whom revascularization is considered.

- Anatomical imaging :
 - Confirm diagnosis if uncertain
 - Candidates for revascularization
 - Confirm the location and degree of stenosis
 - Provide details for complete endovascular/operative planning

Noninvasive Evaluation of PAD: Digital Subtraction Angiography

Gold Standard

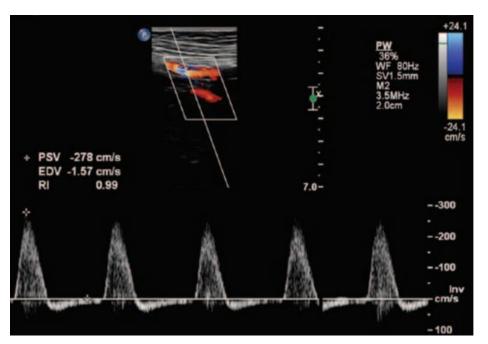
- when revascularization planned -

Invasive angiography is useful for patients with CLI in whom revascularization is considered.

• Limitations:

C-EO

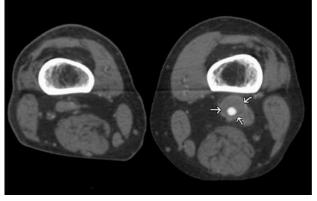
- 2-D views only
- Underestimates stenosis severity due to eccentric lesions
- Unable to visualize vessel wall
- Risks:
 - Invasive (arterial access)
 - Iodinated contrast media
 - Ionizing radiation



Noninvasive Evaluation of PAD: Duplex Ultrasound

Advantages

- Widely accessible, inexpensive
- Anatomic & hemodynamic information
- Sens. and spec. for stenosis
 >50% is 88% and 96%


Disadvantages

- Body habitus may limit accuracy at adductor canal and the aorto-iliac region.
- Infra-popliteal vessels are time consuming and technically challenging
- Limited sensitivity for multilevel stenosis
- Dense calcium can limit
- Incomplete anatomic information for therapeutic decision making or planning interventions

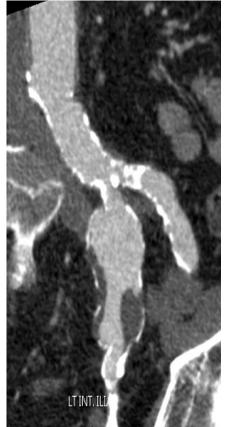
Noninvasive Angiography – CTA / MRA Advanced Post Processing Techniques

Axial 2D

- 3D image acquisition
- High spatial resolution
- Large field of view (FOV)
- Image interpretation with advanced postprocessing techniques
- Excellent for planning revascularization strategies

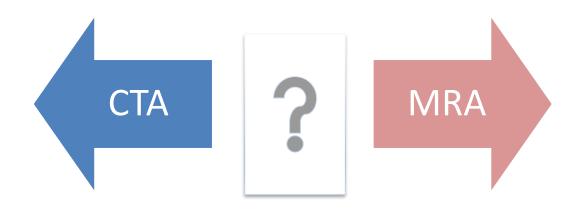
Volume rendered

Global overview


MIP

Angio-like

MPR


Longitudinal and cross section views

Owen A R. Postgrad Med J. 2011 Mar;87(1025):189-98

General Imaging Considerations for Evaluating Symptomatic PAD

Factors to Consider:

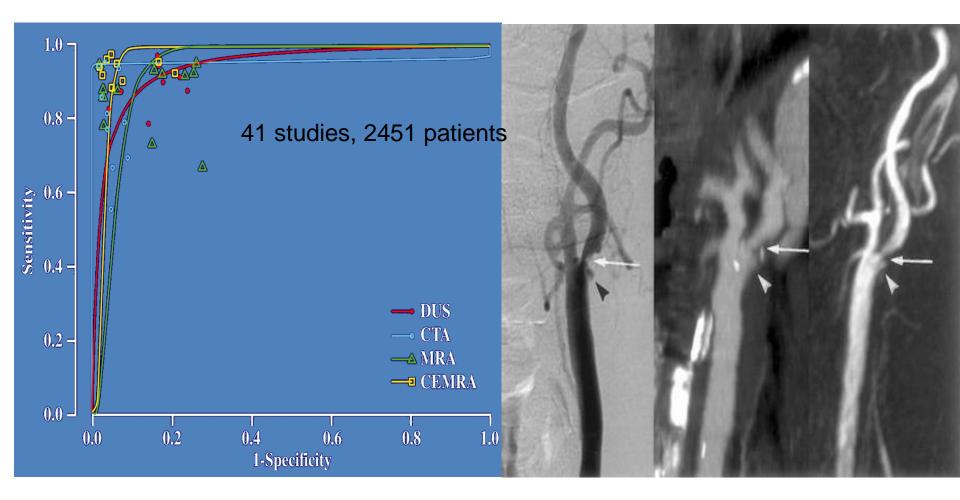
- 1. Diagnostic Accuracy
- 2. Strengths & Limitations of Each Modality
- 3. Risks / Contraindications for the Technique
- 4. Patient Characteristics

Noninvasive Angiography – CTA Diagnostic Accuracy CTA for >50% Stenosis

Me	ta-analysis: 20 studies; 957 pts	;;	No. of S	egments		9	%
	Standard = DSA; 68% PAD Source, by Vessels		False Negative	False Positive	True Negative	Sensitivity	Specificity
	Aortoiliac arteries Mesurolle et al, ²⁷ 2004	18	0	1	29	100	97
l	Portugaller et al, ³⁰ 2004	24	2	12	212	92	95
	Willmann et al, ³³ 2005 ^b	75	3	6	267	96	98
l	Laswed et al, ⁴ 2008	20	1	0	139	95	100
4	Schernthaner et al,⁵ 2008	58	3	4	157	95	98
5-42	Summary estimates (95% Cl)					96 (91-99)	98 (95-99)
Met. JAMA. 2009;301(4):415-424	Femoropopliteal arteries Mesurolle et al, ²⁷ 2004	31	1	4	55	97	93
J1(∠	Portugaller et al, ³⁰ 2004	62	1	11	26	98	70
9;3(Willmann et al, ³³ 2005 ^b	98	3	10	201	97	95
200	Laswed et al, ⁴ 2008	53	4	5	106	93	95
A. S	Schernthaner et al, ⁵ 2008	221	3	2	364	99	99
AM,	Summary estimates (95% Cl)					97 (95-99)	94 (85-99)
let. J.	Tibial arteries Mesurolle et al, ²⁷ 2004	3	4	3	19	43	86
≥	Portugaller et al, ³⁰ 2004	154	18	57	161	90	74
	Schertler et al, ³² 2005	38	2	18	105	95	85
	Willmann et al, ³³ 2005 ^b	177	7	22	496	96	96
	Laswed et al, ⁴ 2008	238	6	15	161	98	91
	Schernthaner et al, ⁵ 2008	200	0	2	337	100	99
	Summary estimates (95% Cl)					95 (85-99)	91 (79-97)
	Femoropopliteal-tibial arteries Li et al, ²⁴ 2008	110	2	4	100	98	96

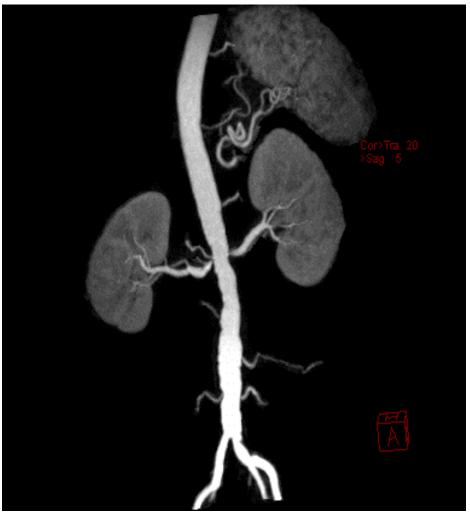


Noninvasive Angiography – MRA Diagnostic Accuracy MRA for >50% Stenosis


Α	ORTO-ILIAC	Author	n	Sensitivity	Specificity
		Snidow	30	100	94
	- 7	Quinn	30	100	98
20 studies;		Но	28	89	98
1022 pts		Hany	37	97	96
· • = = p • •		Poon	15	100	100
		Sueyoshi	23	100	96
34		winterer	76	100	98
Ϋ́ Ι		Lenhart	17	93	85
25	FEMORO- POPLITEAL	Lundun	39	83	92
en en		Sueyoshi	13	88	100
15					
10;		Weighted Average	308	95.6%	95.9%
enke. <i>Ann Intern Med.</i> 2010;153:325–334		Author	n	Sensitivity	Specificity
,ed		Но	28	91	98
N N		Sueyoshi	23	100	99
ue		Winterer	76	100	98
Inte		Lenhart	17	98	98
uu		Waighted Average	1 1 1	98.0%	00.00/
۶. A		Weighted Average	144	90.0%	98.2%
¥ A					
C					

TIBIAL	Author	n	Sensitivity	Specificity
	Glickerkman	23	86	91
	Snidow	42	92	91
	McDermott	24	89	91
	Cartell	31	98	95
	Ekiof	24	81	94
	Weighted Average	120	91.8%	92.0%

Non-invasive Diagnosis of Symptomatic Carotid Stenosis



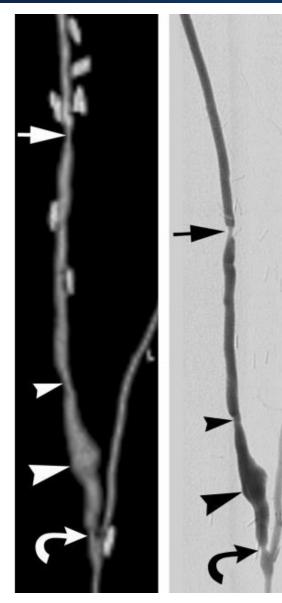
NO risk of stroke with non-invasive techniques

Lancet 2006; 367: 1503-1512

Diagnosis of Renal Artery Stenosis: MRA

3-D Gadolinium enhanced MRA

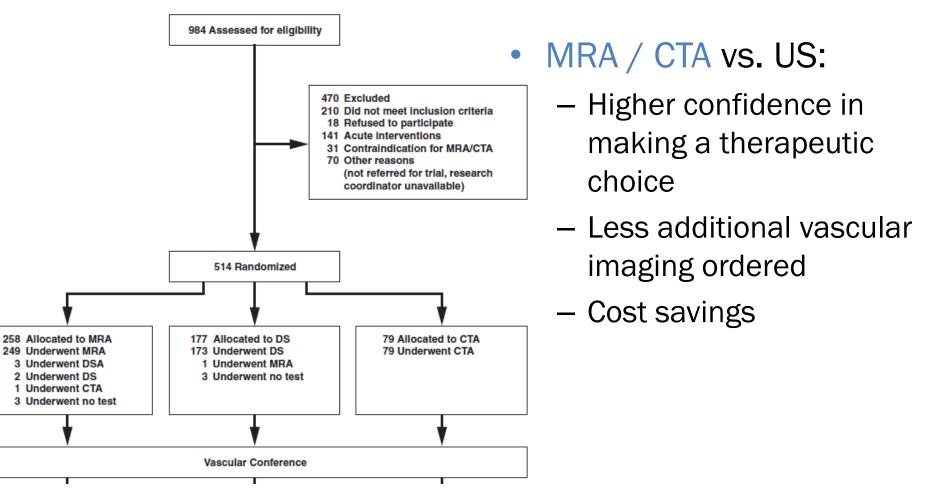
Study	Ν	Sensitivity	Specificity
Kaufman et al	27	89	98
Holland et al	63	100	100
Snidow et al	82	100	100
Hany et al	39	93	98
Rieumont et al	30	100	71
Steffens et al	50	98	96
	004	0.001/	0.00/


Total Weighted 291 Average

98%	96%

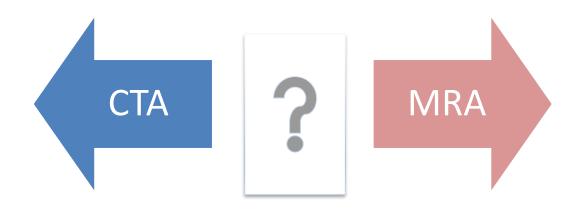
Information Provided: Renal artery stenosis Accessory arteries Blood flow

Evaluation of Peripheral Arterial Bypass Grafts


27 pts with DSA, US, CT99 Arterial Bypass Graft Segments

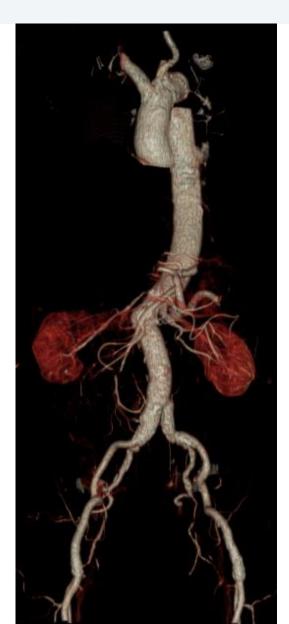
	Sensitivity (%)			Specificity (%)			
Linding in	Multi–Det Row CT Ang				Multi-Detector Row CT Angiography		
Finding in Arterial Bypass Graft	Duplex US	Reader 1	Reader 2	Duplex US	Reader 1	Reader 2	
Stenosis*	100 (98,100)	100 (98,100)	97 (88,100)	96 (90,100)	100 (99,100)	100 (99,100)	
Aneurysmal change Arteriovenous	67 (0,100)	100 (83,100)	100 (83,100)	100 (99,100)	100 (99,100)	100 (99,100)	
fistula	100 (50,100)	100 (50,100)	100 (50,100)	98 (95,100)	98 (95,100)	99 (96,100)	

DIPAD Trial



514 PAD pts randomized MRA/CT or US

General Imaging Considerations for Evaluating Symptomatic PAD


Factors to Consider:

- 1. Diagnostic Accuracy
- 2. Strengths & Limitations of Each Modality
- 3. Risks / Contraindications for the Technique
- 4. Patient Characteristics

CTA for PAD: Strengths

- MDCT scanners readily available
- Rapid acquisition (<5 min)
 - Faster than MRA
- Large FOV
- High, isotropic spatial resolution (~0.5mm)
 - Optimized visualization of smaller, distal arteries

CTA for PAD: Strengths In-stent Restenosis Evaluation of Metallic Stents

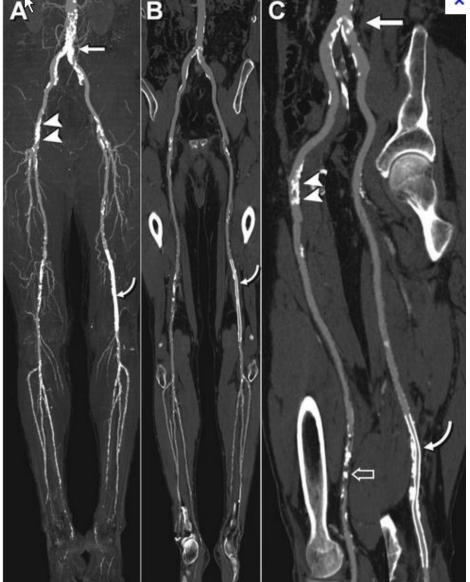
Normal stent

Severe in-stent restenosis

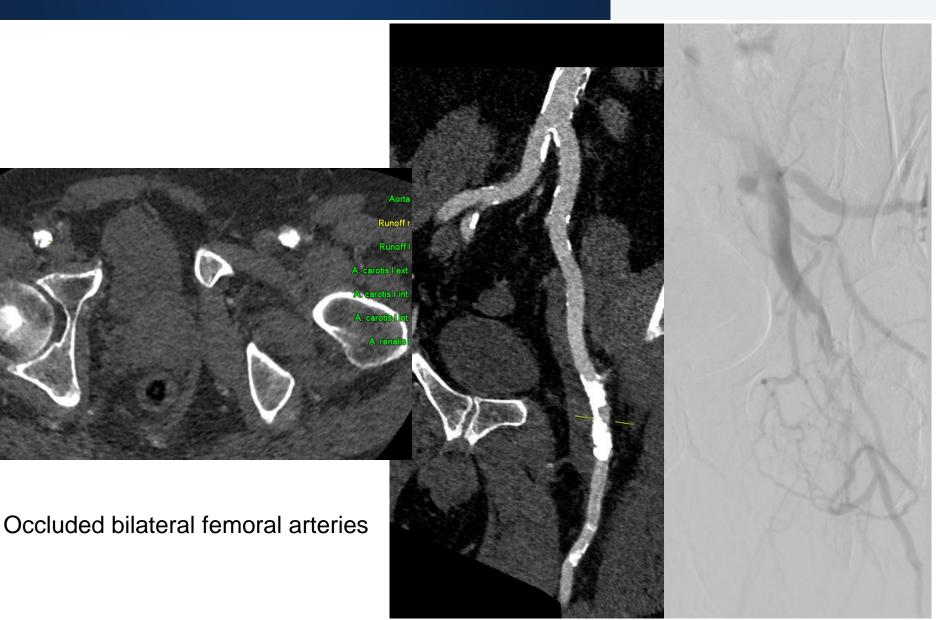
Assessable stents	Total in-stent restenosis	Assessable in-stent restenosis
Sensitivity	24/28(85.7%)	21/22(95.4%)
Specificity	53/53(100%)	53/53(100%)
PPV	24/24(100%)	21/21(100%)
NPV	53/57(93.0%)	53/54(95.1%)
PA	95.1%	98.7%

Beam hardening artifact from small stents can be limiting

Li. Eur J Radiol. 2010;75:98–103


CTA for PAD: Limitations - Heavily Calcified Vessels -

- Dense calcified plaques cause "blooming" obscuring the lumen
 - Leads to stenosis overestimation & false positive results.
 - Often prevalent in elderly, diabetics, & renal patients


➢ Solutions:

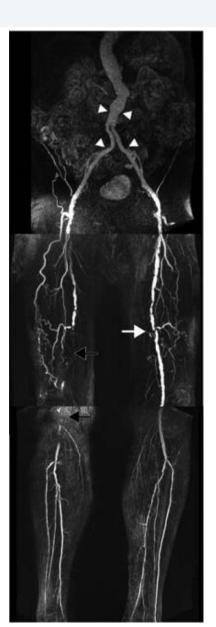
- Thinner slices (0.5-0.6 mm)
- Sharper filters or kernels
- Dual energy CT (DECT)

CTA for PAD: Limitations

HOUSTON Methodist LEADING MEDICINE

- Iodinated contrast media (100-120ml; 4-6 ml/sec)
 - Contrast induced Nephropathy
 - CRI, DM, CHF
 - Contrast allergy
- Ionizing radiation exposure

- Cumulative radiation doses with repeat studies
- Young
- Pregnancy

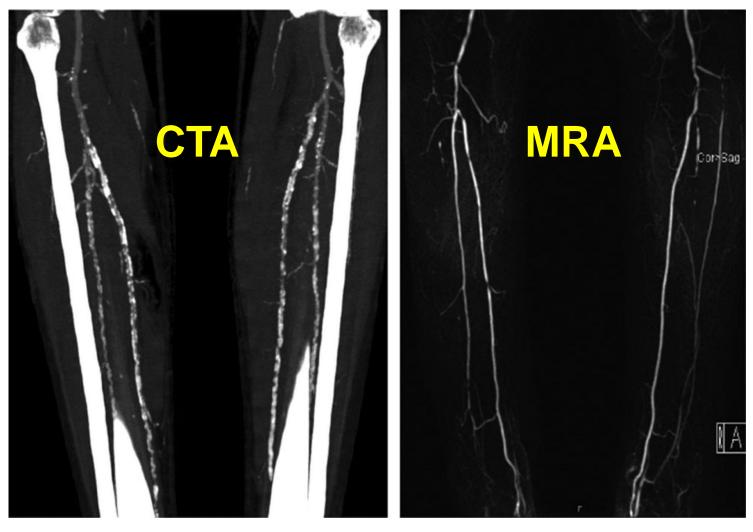


Solutions: New generation MDCT scanners

MRA for PAD: Strengths

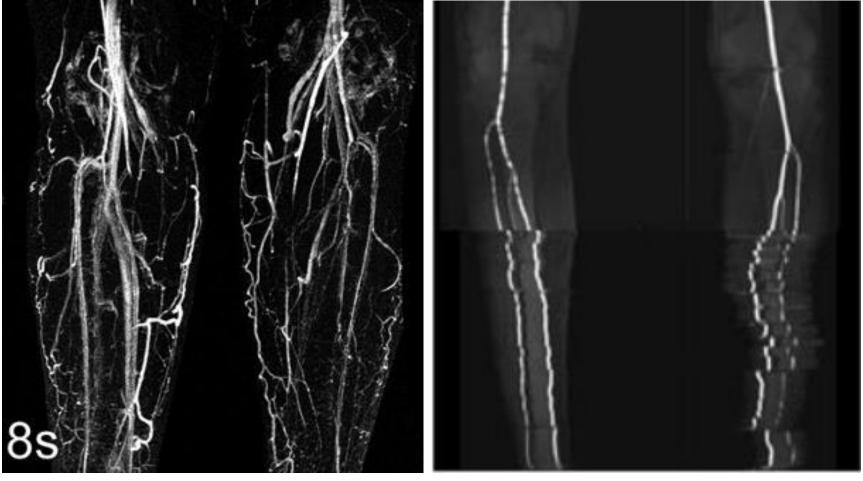
- NO radiation
- NO iodinated contrast
- 3D data set with high SNR
- 2 techniques:
 - Contrast (Gadolinium) enhanced
 - Non-contrast enhanced (TOF, FSE, FFSP)
 [diagnostic performance CE-MRA > TOF]
- Dynamic imaging with high temporal resolution (~50ms)
- Hemodynamics (PC-CMR)
 - Flow quantification (velocity, pressure gradients, blood flow)
 - Organ perfusion imaging

Pollack. Circ Cardiovasc Imaging. 2012;5:797-807



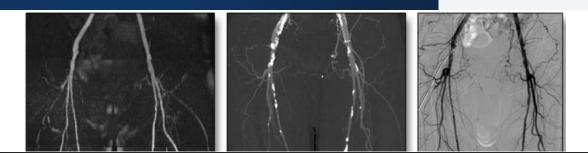
MRA for PAD: Strengths No Limitations from Calcium / Bone

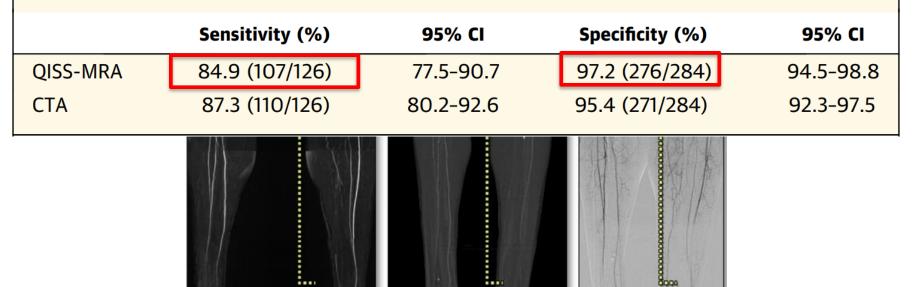
Diabetics frequently have heavily calcified vessels


Pollak A W et al. Circ Cardiovasc Imaging. 2012;5:797-807

MRA for PAD: Strengths Non-Contrast Enhanced Techniques

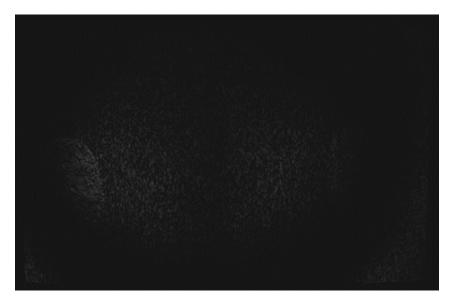
Flow-related enhancement methods


CE-MRA with venous contamination of tibial station in CLI Non contrast MRA: Time of Flight (TOF)


Quiescent-interval single-shot (QISS): Non-contrast MRA Technique

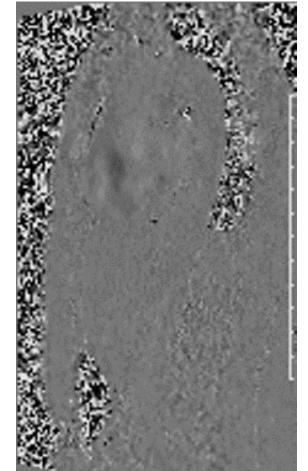
QISS MRA

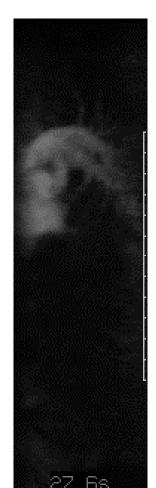
TABLE 3 Per-Segment Test Characteristics of QISS-MRA and CTA for the Detection of Hemodynamically Significant (>50%) Stenosis in the Lower Extremity Arteries Compared With DSA



CTA

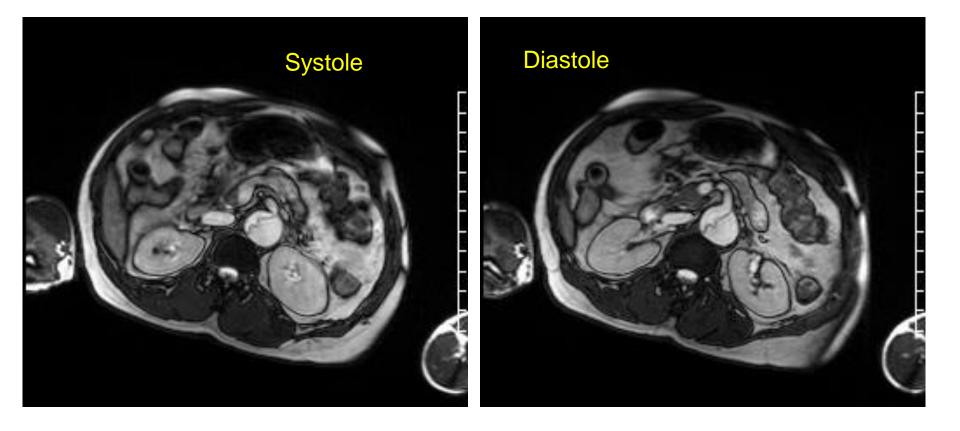
DSA


MRA for PAD: Strengths **Dynamic / Functional Imaging**

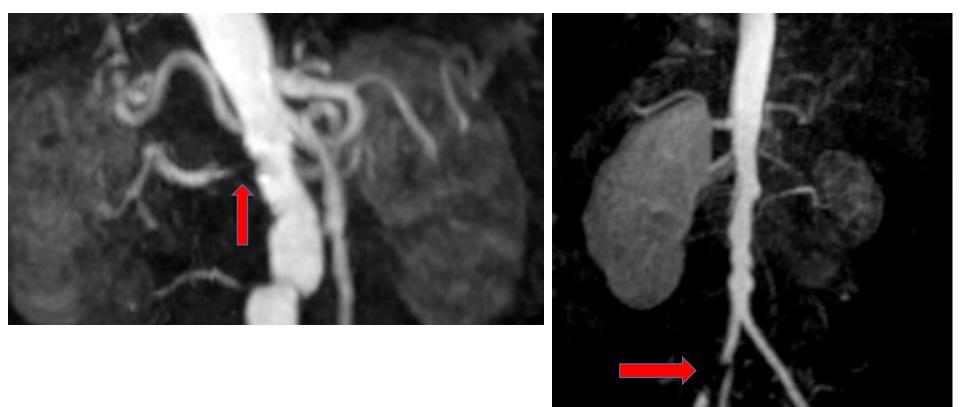


MRA

Cine SSFP: PC CMR: **Time Resolved Dissection Mobility** Flow



MRA for PAD: Strengths Dynamic / Functional Imaging


Dynamic Obstruction of Celiac Artery

MRA for PAD: *Limitations* Limited Assessment of Stents

Lumen within a steel stent may be completely obscured

MRA for PAD: Limitations

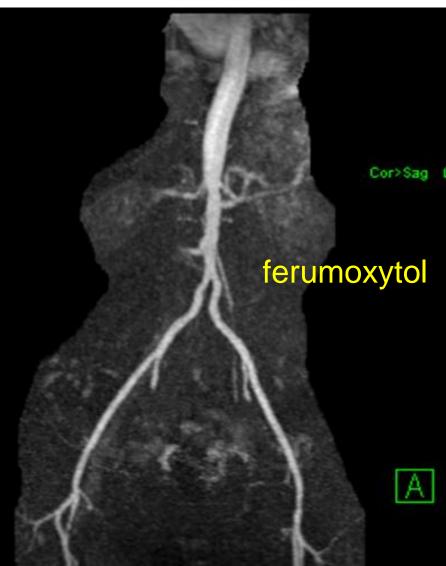
- Lower spatial resolution (1-1.5mm)
 - Overestimation of stenoses in small vessels
- Poor Ca⁺² visualization / No bony landmarks
- Length of study (~30 min)
 - Uncooperative patient
 - Claustrophobia

MRA for PAD: Limitations

- Implanted Metal Devices
 - Pacemaker/ICDs (relative)
 - Electronic devices
 - Infusion pumps
 - Implants & surgical clips

MRISAFETY.COM

- Gadolinium Contrast
 - Allergic reaction
 - Pregnancy
 - +Use Group II GBCA in GFR<30 ml/min/m2


Nephrogenic Systemic Fibrosis

Imaging Advanced Renal Failure Pts (GFR<30 & not already on HD)

- Imaging options for?
 - Ultrasound
 - Non-contrast MRA (TOF)
 - Group II GBCA
 - Ferumoxytol
 - Ultra-small Iron oxide agent
 - Demonstrates superparamagnetic properties during MR imaging
 - Indicated for treatment of Fe deficiency anemia in CKD

2016 AHA/ACC Guideline on the Management of Patients With Lower Extremity Peripheral Artery Disease: Executive Summary

Recom	Recommendations for Imaging for Anatomic Assessment					
COR	LOE Recommendations					
I	B-NR	Duplex ultrasound, CTA, or MRA of the lower extremities is useful to diagnose anatomic location and severity of stenosis for patients with symptomatic PAD in whom revascularization is considered. ^{100–103}				
I.	C-EO	Invasive angiography is useful for patients with CLI in whom revascularization is considered.				
lla	C-EO	Invasive angiography is reasonable for patients with lifestyle-limiting claudication with an inadequate response to GDMT for whom revascularization is considered.				
III: Harm	B-R	Invasive and noninvasive angiography (ie, CTA, MRA) should not be performed for the anatomic assessment of patients with asymptomatic PAD. ^{104–106}				

Test Advantages in the Assessment of PAD

CTA

- Better patient acceptance
- Rapid acquisition
- Higher spatial resolution
- Stent evaluation
- Soft tissues and bone also imaged
- Implanted metal devices

MRA

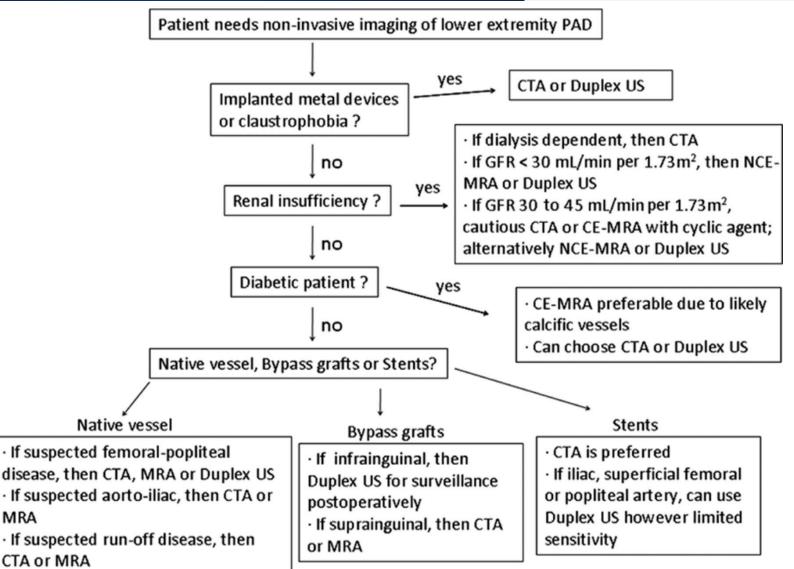
- Both contrast enhanced and non-contrast enhanced techniques available
- No interference from calcification
- Less nephrotoxic contrast
- Radiation free
- Repeat imaging

Both provide excellent anatomical assessment

Test Choice Based on Patient Specific Factors and Safety Profile

Know local availability and expertise First determine contraindications

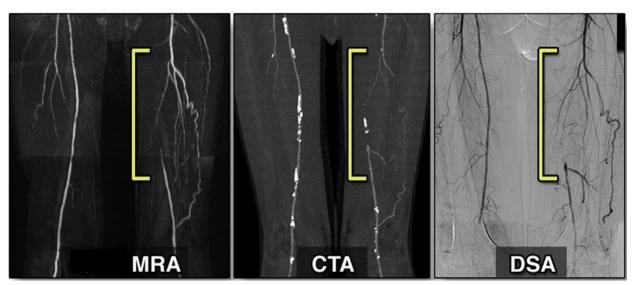
CTA


- Critically ill/less cooperative/claustrophobic patients
- Stent analysis
- For patients on dialysis
- Small vessels
- Implanted metal devices

MRA

- Function and flow studies
- Repeated exams or younger patients
- Heavily calcified vessels
- Diabetics (Ca++, CRI)
- Iodine allergies
- Ferumoxytol for GFR<30 not on HD

An Algorithm for Choosing the Appropriate Imaging Modality for a Given Clinical Scenario



Pollak A W et al. Circ Cardiovasc Imaging. 2012;5:797-807

Take Home Points

- Consider advanced imaging in patients with PAD who are candidates for revascularization
- Both CT and CMR have excellent diagnostic accuracy (as compared to DSA)
- Choice of test is based on local expertise and individual patient characteristics

