Houston Methodist Hospital 12th Annual Multimodality CV Imaging for the Clinician

Basic Concepts and New CMR Techniques

Raymond Y Kwong, MD, MPH Director, Cardiac Magnetic Resonance Imaging Cardiovascular Division, Department of Medicine, Brigham and Women's Hospital

Professor of Medicine, Harvard Medical School

Presenter Disclosure Information

I have the following relevant financial relationships to disclose:

Employee of: Consultant for: Stockholder in: Research support from:

Honoraria from:

Brigham and Women's Hospital Bayer AG, Xylocor, Valo Health None NHLBI Bristol-Myers Squibb Alynlam Inc. Cytokinetics None

Cardiac MRI for Assessing Heart Disease

(Vessel flow)

MRI is an image of Water H⁺

Our Bodies are more than 80% water

Each tissue type has a unique frequency inside an MRI

The Larmor Equation

- The larmor equation calculates the frequency of precession
 - Precessional frequency depends on
 - The type of nucleus
 - The strength of the external magnetic field

Manipulating this frequency (T1, T2, T2* etc) can extract different types of physiology of a given tissue type

Timing diagram: Late Gadolinium Enhancement (LGE)

Components of a CMR

Cine: Cardiac Function

Myocardial perfusion: blood flow and flow reserve

T2 Weighted: Myocardial edema

Late enhancement imaging: Scar/viability, infiltration

T1 and T2 mapping: inflammation/edema, infiltration

T2* mapping: myocardial iron content

Coronary and other MRA

Phase contrast: Blood Flow and velocity

Why Cardiac MRI?

- Multiplanar arbitrary scan planes
- Highest tissue contrast compared to other modalities
- High spatial and temporal resolutions
- Advance by software (pulse sequence) improvement
- Multi-component imaging for cardiac structure and physiology
- Noninvasiveness, lack of ionizing radiation

New Techniques

A 48-year-old female underwent preoperative stress nuclear imaging

a fixed anteroseptal defect was revealed which was reported as consistent with myocardial infarction

> Water Fat

Courtesy of Peter Kellman PhD, NHLBI

50 yo with VT and wall motion abnormality

conventional PSIR late enhancement

WATER

FAT

Courtesy of Peter Kellman PhD, NHLBI

multi-echo PSIR fat/water separated late enhancement

Non-contrast Coronary MRA

- Self-navigated, collects data in all respiratory cycles
- No need for any contrast agents
- Cardiac motion corrected
- 0.9 mm isotropic resolution
- 3D Plug and play (no vessel planning steps)

Courtesy of R. Botnar et al JCMR 2021

Unobstructed coronary arteries

ING'S HEALTH PARTNERS

Proximal LAD Stenosis

Courtesy: Sohaib Nazir, Amedeo Chiribiri, King's College London

4

Al-assist CMR Scanning

2) Tuning

1) Planning

3) Monitoring

Monthly Proportion of Diagnostic CMR Studies that Failed or Succeeded to Complete in <= 45 minutes, Before and After Adopting AI-Assist